高斯消元—基本介绍

高斯消元其实就是暴力解多元一次方程,时间复杂度O(N^3)

按照一般的解方程方法,依次看每个未知数,找到一个包含它的系数非零的方程,用这个方程消掉这个未知数在其它方程中的存在,消元的原理是加减消元法。
一般地,最后每个方程中只含有一个未知数,可以直接解得。

特殊情况:
无解:无解的方程如0x=1,即当一条方程中一个未知数也没有,但常数不为0时,方程无解。
有无穷个解:有无穷个解的方程如0x=0,即对于未知数x,找不到一个系数非零的方程。此时称x为“自由元”,其余可以由x(自由元)或常数组成的解称为“主元”。

 

例题

bzoj 1013 球形空间产生器

 

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=20;
const double eps=1e-6;

int n;
double p[maxn][maxn];

double a[maxn][maxn],b[maxn];//分成未知数和常数两部分 

void Gauss()
{
    for(int i=1;i<=n;i++)
    {
        for(int j=i;j<=n;j++)//枚举第j行 
            if(a[j][i]>-eps)//找到一个第i个元系数不为0的方程 
            {
                for(int k=1;k<=n;k++) swap(a[i][k],a[j][k]);
                swap(b[i],b[j]);
                break;
            }
        for(int j=1;j<=n;j++)
        {
            if(i==j) continue;
            double rate=a[j][i]/a[i][i];//rate是倍数关系 
            for(int k=1;k<=n;k++) a[j][k]=a[j][k]-rate*a[i][k];//从1~n第i个元有系数的全部消消掉 
            b[j]=b[j]-rate*b[i];//常数部分别忘了改变 
        }
    }
}

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n+1;i++)
        for(int j=1;j<=n;j++) scanf("%lf",&p[i][j]);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++) a[i][j]=2*(p[i][j]-p[i+1][j]);
        for(int j=1;j<=n;j++) b[i]+=(p[i][j]*p[i][j]-p[i+1][j]*p[i+1][j]);
    }
    
    Gauss();
    for(int i=1;i<=n;i++) printf("%.3lf ",b[i]/a[i][i]);//a[i][i]*x=b[i] => x=b[i]/a[i][i] 
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值