高斯消元其实就是暴力解多元一次方程,时间复杂度。
按照一般的解方程方法,依次看每个未知数,找到一个包含它的系数非零的方程,用这个方程消掉这个未知数在其它方程中的存在,消元的原理是加减消元法。
一般地,最后每个方程中只含有一个未知数,可以直接解得。
特殊情况:
无解:无解的方程如,即当一条方程中一个未知数也没有,但常数不为0时,方程无解。
有无穷个解:有无穷个解的方程如,即对于未知数x,找不到一个系数非零的方程。此时称x为“自由元”,其余可以由x(自由元)或常数组成的解称为“主元”。
例题
bzoj 1013 球形空间产生器
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=20;
const double eps=1e-6;
int n;
double p[maxn][maxn];
double a[maxn][maxn],b[maxn];//分成未知数和常数两部分
void Gauss()
{
for(int i=1;i<=n;i++)
{
for(int j=i;j<=n;j++)//枚举第j行
if(a[j][i]>-eps)//找到一个第i个元系数不为0的方程
{
for(int k=1;k<=n;k++) swap(a[i][k],a[j][k]);
swap(b[i],b[j]);
break;
}
for(int j=1;j<=n;j++)
{
if(i==j) continue;
double rate=a[j][i]/a[i][i];//rate是倍数关系
for(int k=1;k<=n;k++) a[j][k]=a[j][k]-rate*a[i][k];//从1~n第i个元有系数的全部消消掉
b[j]=b[j]-rate*b[i];//常数部分别忘了改变
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n+1;i++)
for(int j=1;j<=n;j++) scanf("%lf",&p[i][j]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++) a[i][j]=2*(p[i][j]-p[i+1][j]);
for(int j=1;j<=n;j++) b[i]+=(p[i][j]*p[i][j]-p[i+1][j]*p[i+1][j]);
}
Gauss();
for(int i=1;i<=n;i++) printf("%.3lf ",b[i]/a[i][i]);//a[i][i]*x=b[i] => x=b[i]/a[i][i]
return 0;
}