用于开放式词汇目标检测的内置检测器中区域词对齐的探索
开放式词汇目标检测旨在检测独立于训练过程中使用的基本类别的新类别。大多数现代方法都坚持从大规模多模态语料库中学习视觉语言空间,然后将所获得的知识转移到现成的检测器,如 Faster RCNN。然而,在知识转移过程中,由于领域差距阻碍了对新类别的泛化能力,信息可能会衰减或破坏。为了缓解这一困境,我们在本文中提出了一个新的框架,名为 BIND,代表 Bulit in 检测器,以消除对模块更换或知识转移到现成检测器的需求。
SHiNee:开放词汇对象检测的语义层次结构 Nexus
开放词汇目标检测(OVOD)将检测转变为一种语言主导的任务,允许用户在推理过程中自由定义他们感兴趣的类别。然而,我们的初步调查表明,现有的Ovod 检测器在处理跨不同语义粒度的词汇时表现出显着的可变性,这给现实世界的部署带来了担忧。为此,我们引入了语义层次 Nexus(SISH),这是一种使用来自类别层次的语义知识的新型分类器。
生成增强的负值以训练基于数据的目标检测器
用辨别性目标函数训练这种模型已被证明是成功的,但需要良好的正样本和负样本。然而,自由形式的性质和目标描述的开放词汇使得负样本空间非常大。以前的工作是随机抽样底片或使用基于规则的技术来构建底片。相反,我们建议利用现代生成模型中内置的大量知识来自动构建与原始数据更相关的负样本。
DetCLIPv3:迈向多功能生成开放词汇目标检测
现有的开放词汇目标检测器通常需要用户提供一组预定义的类别,这大大限制了他们的应用场景。在本文中,我们介绍了一种高性能的检测器,它不仅擅长于开放词