在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同, 则称这种编码为格雷码(Gray Code),请编写一个函数,使用递归的方法生成N位的格雷码。
给定一个整数n,请返回n位的格雷码,顺序为从0开始。
测试样例:
1
返回:["0","1"]
解题思路:任意两个相邻的代码只有一位二进制数不同,即:
当 n == 1 的时候,格雷码为:["0", "1"]
当 n == 2 的时候,格雷码为:["00", "01", "11", "10"]
当 n == 3 的时候,格雷码为:["000", "001", "011", "010", "110", "111", "101", "100"]
……
仔细看上面的例子可以发现两点:
- n每次增加一,格雷码的数量就多一倍
- 要知道n=2时的格雷码,只需要知道n=1的格雷码,然后将1的格雷码正序一下,在倒序一下,然后在前面一半第一个数字前加上0,后面一半的第一个数字前面加上1,如下图:
想到这里,用递归很容易就可以实现了,代码如下:
import java.util.*;
public class GrayCode {
public String[] getGray(int n) {
if(n == 1)
{
return new String[] {"0", "1"};
}
else
{
String[] preArr = getGray(n-1); //要算n个格雷码,先算上一个的格雷码
String[] curArr = new String[2*preArr.length]; //存放现在n的格雷码,长度为上一个的二倍
for (int i=0; i<preArr.length; i++)
{
curArr[i] = "0"+preArr[i]; //在前面一半的前面加一个零
curArr[curArr.length-1-i] = "1"+preArr[i]; //在后面一半的第一个数字前加一个一
}
return curArr;
}
}
}
牛客网测试结果: