信息奥赛一本通 最大上升子序列和 (1285) 题解
时间限制: 1000 ms
内存限制: 65536 KB
题目描述
一个数的序列 b _ i b\_i b_i,当 b _ 1 < b _ 2 < . . . < b _ S b\_1<b\_2<...<b\_S b_1<b_2<...<b_S的时候,我们称这个序列是上升的。对于给定的一个序列 ( a _ 1 , a _ 2 , . . . , a _ N ) (a\_1,a\_2,...,a\_N) (a_1,a_2,...,a_N),我们可以得到一些上升的子序列 ( a _ i 1 , a _ i 2 , . . . , a _ i K ) (a\_{i1}, a\_{i2}, ..., a\_{iK}) (a_i1,a_i2,...,a_iK),这里 1 < = i _ 1 < i _ 2 < . . . < i _ K < = N 1<=i\_1<i\_2<...<i\_K<=N 1<=i_1<i_2<...<i_K<=N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中和最大为18,为子序列(1,3,5,9)的和。
你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。
输入
输入的第一行是序列的长度N(1<=N<=1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。
输出
最大上升子序列和。
输入样例
7
1 7 3 5 9 4 8
输出样例
18
代码:
#include <bits/stdc++.h>
using namespace std;
int ans = 0, n, d[1024][2];
void dp(int x) {
d[x][1] = d[x][0];
for(int i = x - 1; i > 0; --i)
if(d[x][0] > d[i][0] && d[x][1] < d[i][1] + d[x][0]) d[x][1] = d[i][1] + d[x][0];
ans = max(ans, d[x][1]);
if(x <= n) dp(x + 1);
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &d[i][0]);
dp(1);
printf("%d", ans);
return 0;
}