matplotlib多图区域画图

import numpy as np
import matplotlib.pyplot as plt
def f(t):
    return np.exp(-t)*np.cos(2*np.pi*t)
a=np.arange(0,5,0.02)
plt.subplot(322)
plt.plot(a,f(a))
plt.subplot(323)
plt.plot(a,np.cos(2*np.pi*a),'-.',color='r')
plt.subplot(324)
plt.plot(a,np.sin(2*np.pi*a),'--',color='g')
plt.subplot(325)
plt.plot(a,np.tan(2*np.pi*a),':',color='m')
plt.sacefig('test3',dpi=600)
plt.savefig('../picture/test3',dpi=600)
plt.show()

得到如图所示即为成功;

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Matplotlib是一个Python的数据可视化库,可以用来绘制各种类型的表。要使用Matplotlib读取Excel数据并绘制表,需要使用pandas库来读取Excel文件,然后将数据传递给Matplotlib进行绘制。 以下是一个简单的示例代码,用于读取Excel文件中的数据并绘制一个简单的折线: ```python import pandas as pd import matplotlib.pyplot as plt # 读取Excel文件 df = pd.read_excel('data.xlsx') # 绘制折线 plt.plot(df['日期'], df['销售额']) # 添加标题和标签 plt.title('销售额趋势') plt.xlabel('日期') plt.ylabel('销售额') # 显示表 plt.show() ``` 在这个示例中,我们首先使用pandas库的read_excel函数读取了一个名为data.xlsx的Excel文件,并将其存储在一个名为df的DataFrame对象中。然后,我们使用Matplotlib的plot函数绘制了一个折线,其中x轴为日期,y轴为销售额。最后,我们添加了标题和标签,并使用show函数显示了表。 当然,这只是一个简单的示例,Matplotlib还可以绘制各种类型的表,包括散点、柱状、饼等等。如果想要了解更多Matplotlib的用法,可以参考官方文档或者其他相关教程。 ### 回答2: matplotlib是一种Python的数据可视化库,它可以通过读取Excel数据来绘制形,从而让数据更加直观、易于理解。 要使用matplotlib读取Excel数据画图,首先需要安装并导入matplotlib和pandas这两个库。然后,可以使用pandas的read_excel函数读取Excel文件中的数据,读取完成后可以将数据转换为matplotlib所需的数据类型,例如numpy数组、列表等。 下面是一个简单的例子,演示了如何使用matplotlib读取Excel数据绘制一个柱状: ``` import pandas as pd import matplotlib.pyplot as plt # 读取Excel文件 data = pd.read_excel('data.xlsx') # 将数据转换为列表 x = data['name'].tolist() y = data['score'].tolist() # 绘制柱状 plt.bar(x, y) plt.title('Student Score') plt.xlabel('Name') plt.ylabel('Score') plt.show() ``` 上面的代码中,我们读取了一个名为data.xlsx的Excel文件,并将其转换为了两个列表x和y。然后使用matplotlib的bar函数绘制了一个柱状,最后通过show函数显示形。 以上只是一个非常简单的例子,实际上使用matplotlib读取Excel数据可以绘制更加复杂的形,例如散点、折线、饼等。只需要根据具体的需求选择合适的matplotlib函数和读取Excel数据的方式即可。 ### 回答3: matplotlib是一个开源的Python数据可视化库,可用于绘制各种类型的表和形。它支持读取多种数据源,包括Excel文件。在本文中,我们将介绍如何使用matplotlib读取Excel数据,并用它来绘制表。 在使用matplotlib绘制表之前,需要安装pandas库,用于处理Excel文件。在Python环境中,可以使用pip install pandas来安装pandas。 接下来,我们需要导入相关的库: ```python import pandas as pd import matplotlib.pyplot as plt ``` 读取Excel数据 为了处理Excel数据,我们需要使用pandas库中的“read_excel”函数。这个函数可以读取Excel文件并将其转换为pandas DataFrame对象。下面是一些示例代码: ```python data = pd.read_excel('data.xlsx', sheet_name='Sheet1') ``` 在这个例子中,“data.xlsx”是要读取的Excel文件名,而“Sheet1”是要读取的工作表的名称。如果Excel文件中包含多个工作表,则可以使用sheet_name参数指定要读取的工作表的名称或索引号。 数据预处理 在将数据传递给matplotlib函数之前,通常需要根据具体情况对其进行一些预处理。例如,有时需要过滤掉数据中的无效值或对数据进行归一化处理。 在这里,我们介绍两种常见的数据预处理技术:过滤无效值和归一化。 过滤无效值 在处理数据时,有时会遇到包含NaN或None值的列或行。这些值可能会影响绘结果,因此需要在表中将其排除。可以使用pandas库中的“dropna”函数来过滤掉包含无效值的行或列。 ```python data.dropna() ``` 在这里,dropna()函数将删除包含NaN或None值的列或行。如果要删除带有N个或以上无效值的行或列,则可以使用以下函数: ``` python data.dropna(thresh=N) ``` 归一化 归一化是将数据转换为[0,1]区间内的值的过程。这个过程可以防止数据范围过大导致的精度问题。 ``` python data_norm = (data - data.min()) / (data.max() - data.min()) ``` 在这里,我们使用min()和max()函数来确定数据的最小值和最大值。然后,我们将这些值用于归一化处理。这就是将数据转换为[0,1]的方法。 绘制表 在完成数据预处理后,就可以使用matplotlib绘制表了。常用的绘函数包括: 1.折线:plt.plot() 2.散点: plt.scatter() 3.柱状:plt.bar() 4.饼:plt.pie() 5.箱线:plt.boxplot() 下面是一个简单的示例代码,绘制折线: ```python plt.plot(data['x'], data['y']) plt.show() ``` 在这个例子中,我们使用plot()函数将数据的x和y列绘制成折线。然后,使用show()函数显示表。 除了上面的函数之外,还有很多其他函数可用于绘制各种类型的表。此外,matplotlib还可以进行自定义,可以通过设置标题、坐标轴标签、颜色、线宽度等属性来自定义表。 总结 在本文中,我们介绍了如何使用matplotlib读取Excel数据并绘制表。我们介绍了几种常见的数据预处理技术,并简要介绍了几种常用的绘函数。通过了解这些内容,您应该可以使用matplotlib和pandas绘制出令人印象深刻的表了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值