回归模型代码

1.线性回归模型

% 清除工作区和命令窗口
clear;
clc;

% 假设数据:降水量(毫米)、温度(摄氏度) 和对应的农作物产量(吨)
X = [100, 20; 150, 22; 200, 25; 250, 28; 300, 30; 350, 35]; % 输入变量:降水和温度
Y = [2.5; 3.0; 3.5; 4.0; 4.2; 5.0]; % 输出变量:农作物产量

% 拆分输入变量 X 中的降水和温度数据
precipitation = X(:,1); % 第1列是降水量
temperature = X(:,2);   % 第2列是温度

% 在数据矩阵前添加一列1,代表截距项
X_reg = [ones(size(X, 1), 1), X];

% 使用最小二乘法进行线性回归
coefficients = (X_reg' * X_reg) \ (X_reg' * Y);

% 打印回归系数
fprintf('回归模型系数:\n');
fprintf('截距: %.4f\n', coefficients(1));
fprintf('降水系数: %.4f\n', coefficients(2));
fprintf('温度系数: %.4f\n', coefficients(3));

% 绘制农作物产量与气候条件的关系
figure;
plot3(precipitation, temperature, Y, 'ro', 'MarkerSize', 8); % 数据点
hold on;
[x_surf, y_surf] = meshgrid(min(precipitation):10:max(precipitation), min(temperature):1:max(temperature));
z_surf = coefficients(1) + coefficients(2) * x_surf + coefficients(3) * y_surf;
mesh(x_surf, y_surf, z_surf); % 回归平面

% 图形美化
xlabel('降水量(毫米)');
ylabel('温度(摄氏度)');
zlabel('农作物产量(吨)');
title('农作物产量预测的线性回归模型');
grid on;

% 预测新的作物产量
new_precipitation = 250; % 新的降水量
new_temperature = 27;    % 新的温度
predicted_yield = coefficients(1) + coefficients(2) * new_precipitation + coefficients(3) * new_temperature;
fprintf('预测的农作物产量: %.4f 吨\n', predicted_yield);

2.深度Q学习(DQN)与回归模型相结合

% 清空环境
clear;
clc;

% 初始化环境参数
num_states = 4; % 状态数量 (如气候条件)
num_actions = 3; % 动作数量 (如不同的种植决策)
epsilon = 0.9; % 探索率
gamma = 0.95; % 折扣因子
alpha = 0.01; % 学习率
max_episodes = 500; % 最大训练轮次

% 初始化Q表(Q值函数)
Q_table = rand(num_states, num_actions);

% 假设的环境状态和奖励 (这里可以根据实际农业数据更改)
states = [1, 2, 3, 4]; % 如不同的种植季节
rewards = [10, -5, 20]; % 奖励函数(如产量的增减)

% 深度Q学习算法
for episode = 1:max_episodes
    state = randi([1, num_states]); % 随机选择初始状态
    done = false;
    while ~done
        % epsilon-贪婪策略选择动作
        if rand() < epsilon
            action = randi([1, num_actions]); % 随机动作
        else
            [~, action] = max(Q_table(state, :)); % 选择最大Q值动作
        end

        % 根据动作更新环境状态和获得的奖励
        next_state = randi([1, num_states]); % 下一个状态 (环境响应)
        reward = rewards(action); % 获得的奖励

        % 更新Q值函数(Bellman方程)
        Q_table(state, action) = Q_table(state, action) + alpha * ...
            (reward + gamma * max(Q_table(next_state, :)) - Q_table(state, action));

        % 更新状态
        state = next_state;

        % 终止条件 (如达到某个最大奖励或达到某种最优种植方案)
        if reward > 15
            done = true; % 停止当前回合
        end
    end

    % 减少探索率(epsilon),使得学习过程更加倾向于利用已有经验
    epsilon = epsilon * 0.99;
end

% 训练完成后可以使用Q表进行决策
disp('训练完成后的Q值表:');
disp(Q_table);

% 根据训练的Q值预测未来的农作物产量
% 例如,给定某种气候条件,选择Q值最大的动作(种植策略)
current_state = 2; % 假设当前季节条件
[~, best_action] = max(Q_table(current_state, :));
fprintf('在当前条件下,最佳种植策略是:动作 %d\n', best_action);

3.贝叶斯神经网络 (BNN) 示例代码

% 清理环境
clear;
clc;

% 定义超参数
numInputs = 4;  % 输入维度 (如气候、土壤信息等)
numOutputs = 1; % 输出维度 (如作物产量)
numHiddenUnits = 10; % 隐藏层单元数

% 数据生成 (假设的输入特征和目标数据)
X = randn(100, numInputs);  % 100个样本,4个输入特征
Y = X * [1.2; -0.5; 0.3; 2.0] + randn(100, 1) * 0.1;  % 线性关系+噪声作为输出

% 定义贝叶斯神经网络模型
net = feedforwardnet(numHiddenUnits);  % 定义标准神经网络
net = configure(net, X', Y');  % 配置网络输入输出

% 设置贝叶斯后验优化的训练函数 (MATLAB 使用 'trainbr' 训练贝叶斯神经网络)
net.trainFcn = 'trainbr';  % 使用贝叶斯正则化反向传播

% 训练网络
[net, tr] = train(net, X', Y');

% 测试模型
Y_pred = net(X');

% 可视化实际值和预测值
figure;
plot(1:length(Y), Y, 'b', 1:length(Y_pred), Y_pred, 'r--');
title('实际值与预测值对比');
legend('实际值', '预测值');
xlabel('样本');
ylabel('作物产量');

% 计算不确定性
% MATLAB 没有直接内置BNN的不确定性度量,我们可以通过输出权重分布估计
% 下方展示了获取网络权重的方法,进一步分析不确定性需要使用贝叶斯采样算法

% 获取权重
weights = getwb(net);
fprintf('网络权重为:\n');
disp(weights);

% 使用权重分布来估计预测的不确定性(可以引入MCMC等方法进一步分析)

代码说明:

  1. 神经网络结构:使用一个前馈神经网络(feedforward network)作为模型,输入是气候、土壤等特征,输出是作物产量。

  2. 贝叶斯正则化trainbr 是MATLAB中实现贝叶斯神经网络的训练函数,能够根据后验分布优化权重,自动处理权重正则化,适应噪声和不确定性。

  3. 不确定性估计:在BNN中,权重具有概率分布(后验分布)。为了进一步估计不确定性,可以结合MCMC或其他采样方法,量化预测的不确定性。

4.图神经网络 (GNN) 回归模型示例代码

% 清理环境
clear;
clc;

% 构建一个简单的图
numNodes = 10; % 节点数量 (如农田地块)
A = rand(numNodes) > 0.7; % 随机生成图的邻接矩阵
G = graph(A); % 创建图对象

% 可视化图结构
figure;
plot(G);
title('农田地块关系图');

% 生成节点特征 (例如:气候条件、土壤肥力等)
nodeFeatures = rand(numNodes, 3); % 每个节点有3个特征

% 生成节点标签 (例如:农田的实际亩产量)
nodeLabels = rand(numNodes, 1) * 100; % 每个节点的真实产量(目标值)

% 定义图卷积层
layers = [
    graphConvLayer(16, 'WeightsInitializer', 'glorot') % 第一层图卷积层
    reluLayer % 激活函数
    graphConvLayer(32, 'WeightsInitializer', 'glorot') % 第二层图卷积层
    reluLayer
    fullyConnectedLayer(1) % 输出层,回归问题最终输出一个值
    regressionLayer]; % 使用回归层

% 将图和特征数据封装为 dlnetwork 格式
G_adj = adjacency(G); % 图的邻接矩阵
graphData = dlarray(G_adj, 'CB'); % 创建深度学习输入
featuresData = dlarray(nodeFeatures, 'BC'); % 特征输入

% 定义网络
net = dlnetwork(layers);

% 定义损失函数和优化器
lossFcn = @(Y_pred, Y_true) mse(Y_pred, Y_true); % 均方误差损失
learnRate = 0.01; % 学习率
maxEpochs = 100; % 训练轮数

% 训练网络
for epoch = 1:maxEpochs
    % 前向传播
    Y_pred = forward(net, graphData, featuresData);
    
    % 计算损失
    loss = lossFcn(Y_pred, nodeLabels);
    
    % 反向传播并更新权重
    [gradients, state] = dlfeval(@dlgradient, loss, net.Learnables);
    net = dlupdate(@sgdmupdate, net, gradients, learnRate);
    
    % 输出每个epoch的损失值
    fprintf('Epoch %d, Loss: %.4f\n', epoch, loss);
end

% 预测结果
predictedLabels = predict(net, graphData, featuresData);

% 可视化预测值和真实值
figure;
plot(1:numNodes, nodeLabels, 'bo-', 1:numNodes, predictedLabels, 'r*-');
legend('真实值', '预测值');
title('GNN回归结果');
xlabel('节点(农田地块)');
ylabel('亩产量');

代码说明:

  1. 图的构建:使用 graph 函数创建了一个节点表示农田地块的图,边代表地块之间的联系(如水源共享或气候相似性)。

  2. 图卷积层:通过 graphConvLayer 定义图卷积神经网络层,用于处理节点特征并传播图结构信息。

  3. 回归任务:通过网络的最终输出层(全连接层),预测每个节点的连续值输出,代表不同地块的农作物产量。

  4. 训练和损失计算:使用均方误差作为损失函数,基于随机梯度下降法(SGD)优化模型参数。

5.自适应提升网络 (AdaBoost) 示例代码

% 清理工作环境
clear;
clc;

% 生成示例数据:二分类问题
X = [randn(100,2)+1; randn(100,2)-1]; % 200 个样本,每个样本有 2 个特征
Y = [ones(100,1); -ones(100,1)];      % 标签:1 或 -1

% 可视化示例数据
figure;
gscatter(X(:,1), X(:,2), Y, 'rb', 'xo');
title('示例数据');

% 将数据分成训练集和测试集
cv = cvpartition(size(X,1), 'Holdout', 0.3);
XTrain = X(training(cv), :);
YTrain = Y(training(cv), :);
XTest = X(test(cv), :);
YTest = Y(test(cv), :);

% 构建自适应提升分类器
% 使用决策树作为弱分类器,学习率设为 0.1
t = templateTree('MaxNumSplits', 1); % 弱学习器:决策树桩
Mdl = fitcensemble(XTrain, YTrain, 'Method', 'AdaBoostM1', ...
    'Learners', t, 'LearnRate', 0.1, 'NumLearningCycles', 50);

% 对测试集进行预测
YPred = predict(Mdl, XTest);

% 计算并显示准确率
accuracy = sum(YPred == YTest) / length(YTest) * 100;
fprintf('测试集上的分类准确率: %.2f%%\n', accuracy);

% 可视化分类边界
figure;
gscatter(XTest(:,1), XTest(:,2), YTest, 'rb', 'xo');
hold on;
gscatter(XTest(:,1), XTest(:,2), YPred, 'rb', '+d');
title('真实标签和预测标签比较');
legend('Class 1 True', 'Class -1 True', 'Class 1 Pred', 'Class -1 Pred');
hold off;

代码说明:

  1. 数据生成:创建了一个二维的二分类问题。

  2. 模型训练:使用 fitcensemble 函数结合决策树桩作为弱学习器,训练一个 AdaBoost 模型。

  3. 预测和评估:在测试集上进行预测,并计算分类准确率。

  4. 可视化:绘制了测试集上真实标签与预测标签的对比图。

6.混合效应模型代码示例

% 清理工作空间
clear;
clc;

% 生成示例数据
n = 100;  % 样本量
group = repmat((1:10)', 10, 1);  % 10 个组,每组 10 个样本
x = randn(n, 1);  % 自变量
y = 5 + 3 * x + 2 * randn(n, 1) + group;  % 响应变量

% 将数据组织为表格,包含自变量 x、响应变量 y、和随机效应 group
tbl = table(y, x, group, 'VariableNames', {'Response', 'Predictor', 'Group'});

% 定义混合效应模型
% Response 是因变量,Predictor 是固定效应自变量,(1|Group) 表示组内的随机截距
lme = fitlme(tbl, 'Response ~ Predictor + (1|Group)');

% 显示模型结果
disp(lme);

% 进行预测
newX = table(randn(10, 1), 'VariableNames', {'Predictor'});  % 新的数据
predictedY = predict(lme, newX);  % 预测结果

% 输出预测结果
disp('预测结果:');
disp(predictedY);

% 可视化模型拟合效果
figure;
scatter(x, y, 'bo');  % 绘制原始数据
hold on;
xgrid = linspace(min(x), max(x), 100)';  % 为预测绘制平滑曲线
ygrid = predict(lme, table(xgrid, 'VariableNames', {'Predictor'}));
plot(xgrid, ygrid, 'r-', 'LineWidth', 2);  % 绘制拟合曲线
xlabel('Predictor');
ylabel('Response');
title('线性混合效应模型拟合结果');
hold off;

代码解释:

  1. 数据生成:生成了一些模拟数据,包含随机效应的组变量 group 和自变量 x

  2. 模型拟合:使用 fitlme 函数拟合混合效应模型,其中 Response ~ Predictor + (1|Group) 表示响应变量 Response 受到固定效应 Predictor 和随机效应 (1|Group) 的影响。

  3. 预测:使用拟合好的模型对新的数据进行预测。

  4. 可视化:绘制了模型的拟合结果,并与实际数据进行对比。

注意事项:

  • (1|Group) 表示组内具有随机截距。如果你想要包含随机斜率,可以用 (1+Predictor|Group)

  • 数据表 tbl 是混合效应模型中的标准输入形式

7.量子回归

具体实现步骤:

  1. 在 Python 中准备量子回归模型并处理输入数据。

  2. 在 MATLAB 中调用 Python 脚本进行计算,将数据传递到量子模型中。

  3. 返回预测结果,并在 MATLAB 中进行可视化或进一步分析。

Python代码

# 导入 Qiskit 和其他必要的库
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit_machine_learning.algorithms import VQR  # Variational Quantum Regression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np

# 准备数据
X = np.array([[0.5], [0.6], [0.7], [0.8]])  # 输入特征
y = np.array([0.8, 0.85, 0.9, 0.95])       # 输出标签

# 数据分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 定义量子回归模型
quantum_regressor = VQR(num_qubits=2, reps=3)

# 训练模型
quantum_regressor.fit(X_train_scaled, y_train)

# 对测试集进行预测
predictions = quantum_regressor.predict(X_test_scaled)

# 输出预测结果
print("测试集预测结果: ", predictions)

# 计算预测误差
error = np.abs(predictions - y_test)
print("预测误差: ", error)

Python 量子回归实现(基于 Qiskit)

from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit_machine_learning.algorithms import VQR  # Variational Quantum Regression

# 数据准备
X = [[0.5], [0.6], [0.7], [0.8]]
y = [0.8, 0.85, 0.9, 0.95]

# 定义量子回归模型
quantum_regressor = VQR(num_qubits=2, reps=3)

# 模型训练
quantum_regressor.fit(X, y)

# 进行预测
predictions = quantum_regressor.predict(X)
print("预测结果: ", predictions)

MATLAB 调用 Python 的 Qiskit 脚本

% MATLAB调用Python的Qiskit脚本
pyExec = 'python3'; % Python解释器路径
scriptPath = 'path_to_your_script.py'; % Python脚本路径

% 执行Python脚本并捕获输出
[status, result] = system([pyExec ' ' scriptPath]);

% 显示Python脚本的输出
disp(result);

8.时序深度回归网络

使用 PyTorch 实现 TCN

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

# 定义 TCN 网络
class TemporalConvNet(nn.Module):
    def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
        super(TemporalConvNet, self).__init__()
        layers = []
        for i in range(len(num_channels)):
            dilation_size = 2 ** i
            in_channels = num_inputs if i == 0 else num_channels[i-1]
            out_channels = num_channels[i]
            layers += [nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=(kernel_size-1) * dilation_size, dilation=dilation_size),
                       nn.ReLU(),
                       nn.Dropout(dropout)]
        self.network = nn.Sequential(*layers)
    
    def forward(self, x):
        return self.network(x)

# 创建一个简单的 TCN 模型
class TCNRegressor(nn.Module):
    def __init__(self, input_size, output_size, num_channels):
        super(TCNRegressor, self).__init__()
        self.tcn = TemporalConvNet(input_size, num_channels)
        self.linear = nn.Linear(num_channels[-1], output_size)

    def forward(self, x):
        y1 = self.tcn(x)
        o = self.linear(y1[:, :, -1])  # 获取最后一个时间步的输出
        return o

# 准备一些示例数据
batch_size = 32
sequence_length = 10
num_features = 1
X = torch.rand(batch_size, num_features, sequence_length)  # 输入数据
y = torch.rand(batch_size, 1)  # 目标输出

# 创建数据集和数据加载器
dataset = TensorDataset(X, y)
dataloader = DataLoader(dataset, batch_size=batch_size)

# 初始化模型、损失函数和优化器
input_size = num_features
output_size = 1
num_channels = [25, 50, 100]  # TCN 每一层的通道数
model = TCNRegressor(input_size, output_size, num_channels)
criterion = nn.MSELoss()  # 回归任务使用均方误差
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    for X_batch, y_batch in dataloader:
        optimizer.zero_grad()
        outputs = model(X_batch)
        loss = criterion(outputs, y_batch)
        loss.backward()
        optimizer.step()

    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')

print("训练完成!")

代码说明:

  1. TCN 网络TemporalConvNet 类定义了一个基本的 TCN 架构。它由一系列的卷积层、激活函数(ReLU)和 Dropout 组成。卷积层使用不同的扩张率(dilation)来捕捉不同的时间依赖性。

  2. 回归模型TCNRegressor 使用 TemporalConvNet 提取时序特征,并通过一个线性层将其映射到回归任务的输出。

  3. 数据准备:生成了一个随机的时序数据集作为示例。你可以用实际的农业数据(如气候数据、作物产量)进行替换。

  4. 训练过程:模型通过均方误差(MSE)损失函数和 Adam 优化器进行训练。

运行环境:

需要安装 PyTorch 来运行这段代码,安装方法如下:

pip install torch

9.稀疏高斯过程回归

使用 MATLAB 的 Statistics and Machine Learning Toolbox 实现稀疏高斯过程回归。MATLAB 提供了 fitrgp 函数,其中可以设置稀疏近似来加速大规模数据集的训练。

% 生成示例数据
n = 500;  % 样本数
X = linspace(0, 10, n)';  % 输入数据
y = sin(X) + 0.2*randn(n, 1);  % 输出数据,加入噪声

% 使用稀疏高斯过程回归
gprMdl = fitrgp(X, y, 'KernelFunction', 'squaredexponential', ...
    'FitMethod', 'exact', 'PredictMethod', 'fic', 'ActiveSetSize', 50);

% 可视化拟合结果
X_test = linspace(0, 10, 100)';
[ypred, ~, yci] = predict(gprMdl, X_test);

figure;
plot(X, y, 'r.', 'DisplayName', '训练数据');
hold on;
plot(X_test, ypred, 'b-', 'DisplayName', '预测均值');
fill([X_test; flipud(X_test)], [yci(:,1); flipud(yci(:,2))], 'b', 'FaceAlpha', 0.1, 'EdgeColor', 'none', 'DisplayName', '95%置信区间');
legend;
xlabel('输入 X');
ylabel('输出 y');
title('稀疏高斯过程回归');
hold off;

代码说明:

  1. 数据生成:生成了一个简单的正弦函数并加入噪声作为示例数据。

  2. 稀疏高斯过程回归

    • fitrgp 是 MATLAB 中用于高斯过程回归的函数。通过指定 FitMethod'exact',并使用 'fic' (Fully Independent Training Conditional)方法实现稀疏化。

    • ActiveSetSize 控制稀疏集的大小,这会影响计算效率。

  3. 可视化结果:代码展示了回归的预测值、训练数据和 95% 置信区间。

使用库:

确保有 MATLAB 的 Statistics and Machine Learning Toolbox,该工具箱包含高斯过程回归的相关功能。

这段代码可以在处理大规模农业数据(如产量预测、气候变化等)时,提高计算效率。

  • 7
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值