Description
我们现在有两台机器,A和B。 A机器有n个工作模式,分别为 mode_0、mode_1….mode_n-1,B机器有m个工作模式:mode_0、mode_1….mode_m-1,我们现在有一些工作,每个工作可以用一个三元组来描述(i,x, y ),表示这个工作的编号为i,它可以在A机器的mode_x下或B机器的mode_y模式下被完成。
我们现在有t个工作,去交给A、B两机器完成,机器如果改变一个模式需要人工去操作…
请你排出工作表,以使人工操作的次数最少。
Input
n,m,k (n, m < 100) and k (k < 1000).
下接k行描述这k件工作。
Output
人工操作最少次数。
分析
和vijos 1204 CoVH之柯南开锁是一个道理
不过要处理一下连接0状态的情况。(注意起始时,机器都处在模式0!!)
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
struct{
int x,y;
int next;
}edge[2001];
int ls[2001];
int st[2001];
int v[2001];
int n,m,num;
int dfs(int r)
{
int i=ls[r];
while (i!=0)
{
if (v[edge[i].y]==0)
{
int k=st[edge[i].y];
st[edge[i].y]=r;
v[edge[i].y]=1;
if ((k==0)||(dfs(k)==1)) return 1;
st[edge[i].y]=k;
}
i=edge[i].next;
}
return 0;
}
void lalala()
{
for (int i=1;i<=n;i++){
memset(v,0,sizeof(v));
int j;
j=dfs(i);
}
return;
}
int main()
{
while (1==1){
memset(ls,0,sizeof(ls));
memset(edge,0,sizeof(edge));
memset(st,0,sizeof(st));
scanf("%d",&n);
if (n==0) return 0;
scanf("%d%d",&m,&num);
int nm=0;
for (int i=1;i<=num;i++)
{
int x,y,z;
scanf("%d%d%d",&z,&x,&y);
if ((x==0)||(y==0))
continue;
nm++;
edge[nm].x=x;
edge[nm].y=n+y;
edge[nm].next=ls[x];
ls[x]=nm;
}
int ans=0;
lalala();
for (int i=n+1;i<=n+m;i++)
if (st[i]!=0) ans++;
printf("%d\n",ans);
}
}