Remmarguts' Date poj 2449 A*

1 篇文章 0 订阅

题目大意

给定n个点m条边起点st终点ed求k短路(有向边)

分析

见到老伙计写了,于是乎就也来凑热闹般的写了第一道A*
一开始到是很蒙蔽的,但是经过刻(tou)苦(lan)的学习后,大概学习了一些。
就是把搜索优化减枝了,
设一个F函数来决定下一步的策略
在移动问题中F = G + H
其中:
G = 从起点s,沿着产生的路径,移动到网格上指定方格的移动耗费。
H = 从网格上那个方格移动到终点t的预估移动耗费。这经常被称为启发式的,这样叫的原因是因为它只是个猜测(不一定准确)。
当然,这道题中可以用spfa(dij+对优化poj会爆)求出H来(反向连边,从t开始跑)

然后每次从堆顶取点(这个点的F之最小)然后更新相邻的点,当第k次更新终点t时就找到了k短路。

各种奇怪的RE、TLE、MLE、WA······

code

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>

using namespace std;

struct arr{
    int x,y,w,next;
}edge[200010];
int q[200010];
int ls[2010]; 
int lsr[2010];
int dis[2010];
int v[2010];
int n,m,s,t,k;
int edge_m;

struct cmp1{  
    long long x,f,g;
    bool operator <(cmp1 b) const{
        return b.f<f||b.f==f&&b.g<g;
    }
}; 

void add(int x,int y,int w)
{
    edge_m++;
    edge[edge_m]=(arr){x,y,w,ls[x]};ls[x]=edge_m;
    edge_m++;
    edge[edge_m]=(arr){y,x,w,lsr[y]};lsr[y]=edge_m;
}

void spfa(int s)
{
    for (int i=0;i<=n;i++) dis[i]=2000000000;
    int head,tail;
    head=0; tail=1;
    dis[s]=0;
    q[1]=s;
    v[s]=1;
    while (head<tail)
    {
        head++;
        int x=q[head];
        for (int i=lsr[x];i;i=edge[i].next)
            if (dis[edge[i].y]>dis[x]+edge[i].w)
            {
                dis[edge[i].y]=dis[x]+edge[i].w;
                if (!v[edge[i].y])
                {
                    v[edge[i].y]=1;
                    tail++;
                    q[tail]=edge[i].y;
                }
            }
        v[x]=0;
    }
}

void A()
{
    priority_queue<cmp1> gg;
    gg.push((cmp1){s,dis[s],0});
    int num=0;
    while (gg.size())
    {
        cmp1 now;
        now=gg.top();
        gg.pop();
        int x=now.x;
        if (x==t)
        {
            num++;
            if (num==k)
            {
                printf("%d\n",now.g);
                return;
            }
        }
        for (int j=ls[x];j;j=edge[j].next)
            gg.push((cmp1){edge[j].y,now.g+edge[j].w+dis[edge[j].y],now.g+edge[j].w});
    }
    printf("-1\n");
    return;
}
int main()
{
    while (scanf("%d%d",&n,&m)!=EOF)
    {
        edge_m=0;
        memset(edge,0,sizeof(edge));
        memset(ls,0,sizeof(ls));
        memset(lsr,0,sizeof(lsr));
        for (int i=1;i<=m;i++)
        {
            int x,y,w;
            scanf("%d%d%d",&x,&y,&w);
            add(x,y,w);
        }
        scanf("%d%d%d",&s,&t,&k);

        spfa(t);

        if (dis[s]==dis[0])
        {
            printf("-1\n");
            continue;
        }
        if (s==t)
            k++;
        A();
    }
    return 0;
}   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值