洛谷P1022计算机的改良题解--zhengjun

题目背景

N C L NCL NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能。实验室将这个任务交给了一个刚进入的新手 Z L ZL ZL先生。

题目描述

为了很好的完成这个任务, Z L ZL ZL先生首先研究了一些一元一次方程的实例:

4 + 3 x = 8 4+3x=8 4+3x=8

6 a − 5 + 1 = 2 − 2 a 6a-5+1=2-2a 6a5+1=22a

− 5 + 12 y = 0 -5+12y=0 5+12y=0

Z L ZL ZL先生被主管告之,在计算器上键入的一个一元一次方程中,只包含整数、小写字母及+、-、=这三个数学符号(当然,符号“-”既可作减号,也可作负号)。方程中并没有括号,也没有除号,方程中的字母表示未知数。

你可假设对键入的方程的正确性的判断是由另一个程序员在做,或者说可认为键入的一元一次方程均为合法的,且有唯一实数解。

输入格式

一个一元一次方程。

输出格式

解方程的结果(精确至小数点后三位)。

输入输出样例
输入 #1
6a-5+1=2-2a
输出 #1
a=0.750

思路

一道有点搞事情的大模拟题。(被搞了两次下载数据的机会)
要考虑好多东西。
先上代码

代码

#include<bits/stdc++.h>
using namespace std;
char s[100039];
int main(){
	cin>>s;
	char a;//最终都移到等式的左边
	int fuhao=1,x=0,sum1=0,sum2=0,t=1;//正负号、目前的数、未知数的系数、常数项的系数、判断在等式的那边
	//开始负号默认为正号
	for(int i=0;i<strlen(s);i++){
		if(s[i]=='='){
			if(x){//如果等式的左边一项是常数项,要特判
				sum2+=x*fuhao;//符号为正
				x=0;//清零
			}
			fuhao=1;//开始默认为正号
			t=-1;//转换到等式的右边
			continue;
		}
		switch(s[i]){
			case '-':{
				if(x)//又是特判
				    sum2+=x*fuhao*t;
				fuhao=-1;
				x=0;
				break;
			}
			case '+':{
				if(x)//仍然是特判
				    sum2+=x*fuhao*t;
				fuhao=1;
				x=0;
				break;
			}
	        default:break;
        }
		if(s[i]>='0'&&s[i]<='9')
			x=x*10+s[i]-'0';
		else if(s[i]>='a'&&s[i]<='z'){
			a=s[i];
			sum1+=x?x*fuhao*t:fuhao*t;//如果是+a的话,还是要特判
			x=0;
		}
	}
	if(x)
		sum2-=x*fuhao;//注意是负号
	printf("%c=%0.3lf",a,-double(sum2)/double(sum1));//因为移到了等式的左边,所以要加个负号
	return 0;
}

谢谢-zhengjun

过河卒是一个典型的动态规划问题。首先,我们将整个棋盘看作一个二维数组,数组的每个元素表示到达该位置的路径数目。然后,我们根据题目给出的条件,逐步更新数组中的元素,直到计算出到达目标位置的路径数目。 具体的解题思路如下: 1. 首先,我们可以将马的位置设置为0,表示无法经过该位置。 2. 然后,我们根据马的位置,更新数组中的元素。对于二维数组中的每个位置,我们根据左边和上边的位置来计算到达当前位置的路径数目。具体地,如果左边和上边的位置都可以经过,那么到达当前位置的路径数目就等于左边和上边位置的路径数目之和。如果左边或上边的位置无法经过,那么到达当前位置的路径数目就等于左边或上边位置的路径数目。 3. 最后,我们输出目标位置的路径数目。 下面是洛谷p1002过河卒题解C++代码: ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long a[21][21]; int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; // 初始化数组,马的位置设置为0 for(int i=0; i<=20; i++) { for(int k=0; k<=20; k++) { a[i][k] = 1; } } a[x2][y2] = 0; // 根据马的位置更新数组中的元素 if(x2 >= 2 && y2 >= 1) a[x2-2][y2-1] = 0; if(x2 >= 1 && y2 >= 2) a[x2-1][y2-2] = 0; if(x2 <= 18 && y2 >= 1) a[x2+2][y2-1] = 0; if(x2 <= 19 && y2 >= 2) a[x2+1][y2-2] = 0; if(x2 >= 2) a[x2-2][y2+1] = 0; if(x2 >= 1) a[x2-1][y2+2] = 0; if(y2 >= 1) a[x2+2][y2-1] = 0; if(y2 >= 2) a[x2+1][y2-2] = 0; // 动态规划计算路径数目 for(int i=1; i<=20; i++) { for(int k=1; k<=20; k++) { if(a[i][k] != 0) { a[i][k] = a[i-1][k] + a[i][k-1]; } } } // 输出目标位置的路径数目 cout << a[x1][y1] << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值