人脸识别要先训练数要自己训练据在里面了库要自己下pycharm

该博客介绍了如何使用Python的OpenCV库进行人脸识别。首先,它展示了如何从图像中提取人脸并训练识别器,然后使用预训练的识别器在新的图片上进行人脸检测和识别。在训练过程中,它涉及到了灰度化图片、使用Haarcascade分类器检测人脸以及LBPHFaceRecognizer创建和保存识别器。最后,博主演示了如何在视频流中实时应用这个人脸识别系统。
摘要由CSDN通过智能技术生成

‘’’
import os
import cv2
from PIL import Image
import numpy as np

def getImageAndLabel(path):
# 储存人脸数据
facesSamples = []
# 储存姓名数据
ids = []
# 储存图片信息(通过路径将 图片全部存储到变量imagePaths中)
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
# 加载分类器
face_detector = cv2.CascadeClassifier(
‘C:/Users/ASUS-PC/PycharmProjects/pythonProject4/venv/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml’)
# 遍历列表中的图片(保存图片和人的对应关系)
for imagePath in imagePaths:
# 打开图片,灰度化PIL有九种不同的模式:1(黑白:0和1),L(灰度:像素点0-255),P,RGBA,CMYK,YCbCr,I,F。
PIL_img = Image.open(imagePath).convert(‘L’) # 将图片转换为数字
# 将图像转化为数组,以黑白深浅
img_numpy = np.array(PIL_img, ‘uint8’)
# 获取图片人脸特征(通过人脸检测分配器,仅获取人脸部分)
faces = face_detector.detectMultiScale(img_numpy)
# 获取每张图片的id 和 姓名
id = int

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值