EM算法·最大期望算法

EM算法,称为期望-最大化,它用于求解MLE的一种迭代算法

它的主要思想是把一个难于处理的似然函数最大化问题用一个易于最大化的序列取代,而其极限是原始问题的解

EM算法分为两个步骤:E步求期望,对隐变量进行积分;M步求参数最大值

推导出EM算法有两个途径:ELBO+KL散度和ELBO+Jensen不等式

E步本质是求隐变量z的后验分布p(z|x,θ),但很多情况无法直接求解,这就引出广义EM算法

广义EM的E步是求KL散度最小值的p(z),M步求似然函数最大值的参数θ

广义EM算法也无法求解所有最优化问题,这时会有变种的EM算法,比如变分推断、蒙特卡洛采样等

EM算法(Expectation-Maximization),中文是期望-最大化。它是求解估计量的一种方法,用于保证收敛到MLE(最大似然估计)。主要用于求解包含隐变量的混合模型,主要思想是把一个难于处理的似然函数最大化问题用一个易于最大化的序列取代,而其极限是原始问题的解。
 

一、最大似然

       举个小例子:

        假设我们需要调查我们学校的男生和女生的身高分布。那么多人不可能一个一个去问吧,肯定是抽样了。假设你在校园里随便地活捉了100个男生和100个女生。他们共200个身高的样本数据,统计抽样得到的100个男生的身高。假设他们的身高是服从高斯分布的。但是这个分布的均值u和方差∂2我们不知道,这两个参数就是我们要估计的。记作θ=[u, ∂]T。

       用数学的语言来说就是:在学校那么多男生中,我们独立地按照概率密度p(x|θ)抽取100了,组成样本集X,我们想通过样本集X来估计出未知参数θ。这里概率密度p(x|θ)我们知道了是高斯分布N(u,∂)的形式,其中的未知参数是θ=[u, ∂]T。抽到的样本集是X={x1,x2,…,xN},其中xi表示抽到的第i个人的身高,这里N就是100,表示抽到的样本个数。

      由于每个样本都是独立地从p(x|θ)中抽取的,换句话说这100个男生中的任何一个,都是我随便捉的,从我的角度来看这些男生之间是没有关系的。那么,我从学校那么多男生中为什么就恰好抽到了这100个人呢?抽到这100个人的概率是多少呢?因为这些男生(的身高)是服从同一个高斯分布p(x|θ)的。那么我抽到男生A(的身高)的概率是p(xA|θ),抽到男生B的概率是p(xB|θ),因为他们是独立的,所以很明显,我同时抽到男生A和男生B的概率是p(xA|θ)* p(xB|θ),同理,我同时抽到这100个男生的概率就是他们各自概率的乘积了。也就是样本集X中各个样本的联合概率,用下式表示:

     这个概率反映了,在概率密度函数的参数是θ时,得到X这组样本的概率。因为这里X是已知的,而θ是未知了,则上面这个公式只有θ是未知数,所以它是θ的函数。这个函数放映的是在不同的参数θ取值下,取得当前这个样本集的可能性,因此称为参数θ相对于样本集X的似然函数(likehood function)。记为L(θ)。

      这里出现了一个概念,似然函数。还记得我们的目标吗?我们需要在已经抽到这一组样本X的条件下,估计参数θ的值。怎么估计呢?似然函数有啥用呢?

直接举个例子:

      某位同学与一位猎人一起外出打猎,一只野兔从前方窜过。只听一声枪响,野兔应声到下,如果要你推测,这一发命中的子弹是谁打的?你就会想,只发一枪便打中,由于猎人命中的概率一般大于这位同学命中的概率,看来这一枪是猎人射中的。。

      从上面这个例子,你得到了什么结论?

       回到男生身高那个例子。在学校那么男生中,我一抽就抽到这100个男生,而不是其他人,那是不是表示在整个学校中,这100个人出现的概率最大啊。那么这个概率表示就是上面那个似然函数L(θ)。所以,我们就只需要找到一个参数θ,其对应的似然函数L(θ)最大,也就是说抽到这100个男生(的身高)概率最大。这个叫做θ的最大似然估计量,记为:

有时,可以看到L(θ)是连乘的,所以为了便于分析,还可以定义对数似然函数,将其变成连加的:

      现在我们知道了,要求θ,只需要使θ的似然函数L(θ)极大化,然后极大值对应的θ就是我们的估计。这里就回到了求最值的问题了。怎么求一个函数的最值?当然是求导,然后让导数为0,那么解这个方程得到的θ就是了(当然,前提是函数L(θ)连续可微)。那如果θ是包含多个参数的向量那怎么处理啊?当然是求L(θ)对所有参数的偏导数,也就是梯度了,那么n个未知的参数,就有n个方程,方程组的解就是似然函数的极值点了,当然就得到这n个参数了。

      最大似然估计你可以把它看作是一个反推。多数情况下我们是根据已知条件来推算结果,而最大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件,就是最大似然估计。

极大似然估计总结:

        极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

二、EM算法

       好了,重新回到上面那个身高分布估计的问题。现在,通过抽取得到的那100个男生的身高和已知的其身高服从高斯分布,我们通过最大化其似然函数,就可以得到了对应高斯分布的参数θ=[u, ∂]T了。那么,对于我们学校的女生的身高分布也可以用同样的方法得到了。

       再回到例子本身,我抽到这200个人中,某些男生和某些女生一见钟情,已经好上了,纠缠起来了。咱们也不想那么残忍,硬把他们拉扯开。那现在这200个人已经混到一起了,这时候,你从这200个人(的身高)里面随便给我指一个人(的身高),我都无法确定这个人(的身高)是男生(的身高)还是女生(的身高)。也就是说你不知道抽取的那200个人里面的每一个人到底是从男生的那个身高分布里面抽取的,还是女生的那个身高分布抽取的。

        这个时候,对于每一个样本或者你抽取到的人,就有两个东西需要猜测或者估计的了,一是这个人是男的还是女的?二是男生和女生对应的身高的高斯分布的参数是多少?

       只有当我们知道了哪些人属于同一个高斯分布的时候,我们才能够对这个分布的参数作出靠谱的预测,例如刚开始的最大似然所说的,但现在两种高斯分布的人混在一块了,我们又不知道哪些人属于第一个高斯分布,哪些属于第二个,所以就没法估计这两个分布的参数。反过来,只有当我们对这两个分布的参数作出了准确的估计的时候,才能知道到底哪些人属于第一个分布,那些人属于第二个分布。

       我先随便整一个值出来,看你怎么变,然后我再根据你的变化调整我的变化,然后如此迭代着不断互相推导,最终就会收敛到一个解。这就是EM算法的基本思想了。

       EM算法就是这样,假设我们想估计知道A和B两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。

         EM的意思是“Expectation Maximization”,在我们上面这个问题里面,我们是先随便猜一下男生(身高)的正态分布的参数:如均值和方差是多少。例如男生的均值是1米7,方差是0.1米,然后计算出每个人更可能属于第一个还是第二个正态分布中的,这个是属于Expectation一步。有了每个人的归属,或者说我们已经大概地按上面的方法将这200个人分为男生和女生两部分,我们就可以根据之前说的最大似然那样,通过这些被大概分为男生的n个人来重新估计第一个分布的参数,女生的那个分布同样方法重新估计。这个是Maximization。然后,当我们更新了这两个分布的时候,每一个属于这两个分布的概率又变了,那么我们就再需要调整E步……如此往复,直到参数基本不再发生变化为止。

      这里把每个人(样本)的完整描述看做是三元组yi={xi,zi1,zi2},其中,xi是第i个样本的观测值,也就是对应的这个人的身高,是可以观测到的值。zi1和zi2表示男生和女生这两个高斯分布中哪个被用来产生值xi,就是说这两个值标记这个人到底是男生还是女生(的身高分布产生的)。这两个值我们是不知道的,是隐含变量。确切的说,zij在xi由第j个高斯分布产生时值为1,否则为0 。例如一个样本的观测值为1.8,然后他来自男生的那个高斯分布,那么我们可以将这个样本表示为{1.8, 1, 0}。如果zi1和zi2的值已知,也就是说每个人我已经标记为男生或者女生了,那么我们就可以利用上面说的最大似然算法来估计他们各自高斯分布的参数。但是它们未知,因此我们只能用EM算法。

       咱们现在不是因为那个恶心的隐变量(抽取得到的每个样本都不知道是从哪个分布抽取的)使得本来简单的可以求解的问题变复杂了,求解不了吗。那怎么办呢?人类解决问题的思路都是想能否把复杂的问题简单化。好,那么现在把这个复杂的问题逆回来,我假设已经知道这个隐含变量了,然后求这个隐含变量的期望,当成是这个隐含变量的已知值,那么现在就可以用最大似然求解那个分布的参数了吧,那假设这个参数比之前的那个随机的参数要好,它更能表达真实的分布,那么我们再通过这个参数确定的分布去求这个隐含变量的期望,然后再最大化,得到另一个更优的参数,……迭代。

三、EM算法推导

       假设我们有一个样本集{x(1),…,x(m)},包含m个独立的样本。但每个样本i对应的类别z(i)是未知的(相当于聚类),也即隐含变量。故我们需要估计概率模型p(x,z)的参数θ,但是由于里面包含隐含变量z,所以很难用最大似然求解,但如果z知道了,那我们就很容易求解了。

       对于参数估计,我们本质上还是想获得一个使似然函数最大化的那个参数θ,现在与最大似然不同的只是似然函数式中多了一个未知的变量z,见下式(1)。也就是说我们的目标是找到适合的θ和z让L(θ)最大。我也可以分别对未知的θ和z分别求偏导,再令其等于0,求解出来不也一样吗?

      本质上我们是需要最大化(1)式(对(1)式,我们回忆下联合概率密度下某个变量的边缘概率密度函数的求解,注意这里z也是随机变量。对每一个样本i的所有可能类别z求等式右边的联合概率密度函数和,也就得到等式左边为随机变量x的边缘概率密度),也就是似然函数,但是可以看到里面有“和的对数”,求导后形式会非常复杂(自己可以想象下log(f1(x)+ f2(x)+ f3(x)+…)复合函数的求导),所以很难求解得到未知参数z和θ。那OK,我们可否对(1)式做一些改变呢?我们看(2)式,(2)式只是分子分母同乘以一个相等的函数,还是有“和的对数”啊,还是求解不了,那为什么要这么做呢?咱们先不管,看(3)式,发现(3)式变成了“对数的和”,那这样求导就容易了。

EM算法(Expectation-maximization):

     期望最大算法是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。

EM的算法流程:

初始化分布参数θ;

重复以下步骤直到收敛

        E步骤:根据参数初始值或上一次迭代的模型参数来计算出隐性变量的后验概率,其实就是隐性变量的期望。作为隐藏变量的现估计值:
       

        M步骤:将似然函数最大化以获得新的参数值:

          

        这个不断的迭代,就可以得到使似然函数L(θ)最大化的参数θ了。

感性的说,因为下界不断提高,所以极大似然估计单调增加,那么最终我们会到达最大似然估计的最大值。理性分析的话,就会得到下面的东西:

具体如何证明的,看推导过程参考:Andrew Ng 《The EM algorithm》

(EM算法)The EM Algorithm - JerryLead - 博客园

四、EM算法另一种理解

坐标上升法(Coordinate ascent):

       图中的直线式迭代优化的路径,可以看到每一步都会向最优值前进一步,而且前进路线是平行于坐标轴的,因为每一步只优化一个变量。

       这犹如在x-y坐标系中找一个曲线的极值,然而曲线函数不能直接求导,因此什么梯度下降方法就不适用了。但固定一个变量后,另外一个可以通过求导得到,因此可以使用坐标上升法,一次固定一个变量,对另外的求极值,最后逐步逼近极值。对应到EM上,E步:固定θ,优化Q;M步:固定Q,优化θ;交替将极值推向最大。

五、EM的应用

       EM算法有很多的应用,最广泛的就是GMM混合高斯模型、聚类、HMM等等。具体可以参考JerryLead的cnblog中的Machine Learning专栏:

EM算法)The EM Algorithm

混合高斯模型(Mixtures of Gaussians)和EM算法

  • 8
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆有库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值