集中和分散KF(详细推导)

集中式KF

综合考虑主导航系统及各子导航系统,取多传感器组合导航系统的状态方程为:
X k + 1 = Φ k + 1 , k X k + Γ k W k (1) \boldsymbol{X}_{k+1}=\boldsymbol{\Phi}_{k+1, k}\boldsymbol{X}_{k}+\boldsymbol{\Gamma}_{k}\boldsymbol{W}_{k}\tag{1} Xk+1=Φk+1,kXk+ΓkWk(1)
各子导航系统的量测方程可表示为:
Z k + 1 i = H k + 1 i X k + 1 + V k + 1 i (2) \boldsymbol{Z}_{k+1}^{i}=\boldsymbol{H}_{k+1}^{i} \boldsymbol{X}_{k+1}+\boldsymbol{V}_{k+1}^{i}\tag{2} Zk+1i=Hk+1iXk+1+Vk+1i(2)

其中, Z k + 1 i ∈ R m i \boldsymbol{Z}_{k+1}^{i} \in \boldsymbol{R}^{m_{i}} Zk+1iRmi为量测向量, H k + 1 i \boldsymbol{H}_{k+1}^{i} Hk+1i为量测矩阵, V k + 1 i ∈ R m i \boldsymbol{V}_{k+1}^{i} \in \boldsymbol{R}^{m_{i}} Vk+1iRmi为均值为零、相互独立的高斯序列, 且:

E { [ W k V k i ] [ W l T ( V l i ) T ] } = [ Q k l 0 0 R k l i ] δ k l \begin{aligned} \mathrm{E}\left\{\left[\begin{array}{l} \boldsymbol{W}_{k} \\ \boldsymbol{V}_{k}^{i} \end{array}\right]\left[\begin{array}{ll} \boldsymbol{W}_{l}^{\mathrm{T}} & \left(\boldsymbol{V}_{l}^{i}\right)^{\mathrm{T}} \end{array}\right]\right\}=\left[\begin{array}{cc} \boldsymbol{Q}_{kl} & 0 \\ 0 & \boldsymbol{R}_{kl}^{i} \end{array}\right] \delta_{kl} \end{aligned} E{[WkVki][WlT(Vli)T]}=[Qkl00Rkli]δkl

于是集中式卡尔曼滤波器量测方程为:

Z k + 1 = H k + 1 X k + 1 + V k + 1 (3) \boldsymbol{Z}_{k+1}=\boldsymbol{H}_{k+1} \boldsymbol{X}_{k+1}+\boldsymbol{V}_{k+1}\tag{3} Zk+1=Hk+1Xk+1+Vk+1(3)

其中,

Z k + 1 = [ ( Z k + 1 1 ) T , ( Z k + 1 2 ) T , ⋯   , ( Z k + 1 N ) T ] T H k + 1 = [ ( H k + 1 1 ) T , ( H k + 1 2 ) T , ⋯   , ( H k + 1 N ) T ] T V k + 1 = [ ( V k + 1 1 ) T , ( V k + 1 2 ) T , ⋯   , ( V k + 1 N ) T ] T \begin{aligned} \boldsymbol{Z}_{k+1} & =\left[\left(\boldsymbol{Z}_{k+1}^{1}\right)^{\mathrm{T}},\left(\boldsymbol{Z}_{k+1}^{2}\right)^{\mathrm{T}}, \cdots,\left(\boldsymbol{Z}_{k+1}^{N}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \\ \boldsymbol{H}_{k+1} & =\left[\left(\boldsymbol{H}_{k+1}^{1}\right)^{\mathrm{T}},\left(\boldsymbol{H}_{k+1}^{2}\right)^{\mathrm{T}}, \cdots,\left(\boldsymbol{H}_{k+1}^{N}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \\ \boldsymbol{V}_{k+1} & =\left[\left(\boldsymbol{V}_{k+1}^{1}\right)^{\mathrm{T}},\left(\boldsymbol{V}_{k+1}^{2}\right)^{\mathrm{T}}, \cdots,\left(\boldsymbol{V}_{k+1}^{N}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \end{aligned} Zk+1Hk+1Vk+1=[(Zk+11)T,(Zk+12)T,,(Zk+1N)T]T=[(Hk+11)T,(Hk+12)T,,(Hk+1N)T]T=[(Vk+11)T,(Vk+12)T,,(Vk+1N)T]T

E { [ W k V k X ~ 0 ∣ 0 ] [ W l T V l T X ~ 0 ∣ 0 T ] } = [ Q k l δ k l 0 0 0 R k l δ k l 0 0 P 0 ∣ 0 ] \begin{aligned} \mathrm{E}\left\{\left[\begin{array}{c} \boldsymbol{W}_{k} \\ \boldsymbol{V}_{k} \\ \tilde{\boldsymbol{X}}_{{0 \mid 0}} \end{array}\right]\left[\begin{array}{lll} \boldsymbol{W}_{l}^{\mathrm{T}} & \boldsymbol{V}_{l}^{\mathrm{T}} & \tilde{\boldsymbol{X}}_{{0\mid 0 }}^{\mathrm{T}} \end{array}\right]\right\}=\left[\begin{array}{ccc} \boldsymbol{Q}_{kl} \delta_{k l} & 0 & 0 \\ 0 & \boldsymbol{R}_{kl} \delta_{k l} & \\ 0 & 0 & \boldsymbol{P}_{0\mid 0} \end{array}\right] \end{aligned} E WkVkX~00 [WlTVlTX~00T] = Qklδkl000Rklδkl00P00

其中,
R k + 1 − 1 = diag ⁡ { ( R k + 1 1 ) − 1 , ( R k + 1 2 ) − 1 , ⋯   , ( R k + 1 N ) − 1 } (4) \boldsymbol{R}_{k+1}^{-1}=\operatorname{diag}\left\{\left(\boldsymbol{R}_{k+1}^{1}\right)^{-1},\left(\boldsymbol{R}_{k+1}^{2}\right)^{-1}, \cdots,\left(\boldsymbol{R}_{k+1}^{N}\right)^{-1}\right\}\tag{4} Rk+11=diag{(Rk+11)1,(Rk+12)1,,(Rk+1N)1}(4)
集中卡尔曼滤波器的状态估计方程为:
X ^ k + 1 ∣ k + 1 = X ^ k + 1 ∣ k + K k + 1 [ Z k + 1 − H k + 1 X ^ k + 1 ∣ k ] (5) \hat{\boldsymbol{X}}_{k+1 \mid k+1}=\hat{\boldsymbol{X}}_{k+1 \mid k}+\boldsymbol{K}_{k+1}\left[\boldsymbol{Z}_{k+1}-\boldsymbol{H}_{k+1} \hat{\boldsymbol{X}}_{k+1 \mid k}\right]\tag{5} X^k+1k+1=X^k+1k+Kk+1[Zk+1Hk+1X^k+1k](5)

X ^ k + 1 ∣ k = Φ k + 1 , k X ^ k ∣ k (6) \hat{\boldsymbol{X}}_{k+1 \mid k}=\boldsymbol{\Phi}_{k+1, k} \hat{\boldsymbol{X}}_{k \mid k}\tag{6} X^k+1k=Φk+1,kX^kk(6)

K k + 1 = P k + 1 ∣ k + 1 H k + 1 T R k + 1 − 1 = P k + 1 ∣ k + 1 [ ( H k + 1 1 ) T ( R k + 1 1 ) − 1 , ⋯   , ( H k + 1 N ) T ( R k + 1 N ) − 1 ] = [ K k + 1 1 , ⋯   , K k + 1 N ] (7) \begin{aligned} \boldsymbol{K}_{k+1}&=\boldsymbol{P}_{k+1 \mid k+1} \boldsymbol{H}_{k+1}^{\mathrm{T}} \boldsymbol{R}_{k+1}^{-1}\\ &=\boldsymbol{P}_{k+1 \mid k+1}\left[\left(\boldsymbol{H}_{k+1}^{1}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{1}\right)^{-1}, \cdots,\left(\boldsymbol{H}_{k+1}^{N}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{N}\right)^{-1}\right]\\ &=\left[\boldsymbol{K}_{k+1}^{1}, \cdots, \boldsymbol{K}_{k+1}^{N}\right] \end{aligned} \tag{7} Kk+1=Pk+1k+1Hk+1TRk+11=Pk+1k+1[(Hk+11)T(Rk+11)1,,(Hk+1N)T(Rk+1N)1]=[Kk+11,,Kk+1N](7)

P k + 1 ∣ k + 1 − 1 = P k + 1 ∣ k − 1 + H k + 1 T R k + 1 − 1 H k + 1 = P k + 1 ∣ k − 1 + ∑ i = 1 N ( H k + 1 i ) T ( R k + 1 i ) − 1 H k + 1 i = P k + 1 ∣ k − 1 + ∑ i = 1 N [ ( P k + 1 ∣ k + 1 i ) − 1 − ( P k + 1 ∣ k i ) − 1 ] (8) \begin{aligned} \boldsymbol{P}_{k+1 \mid k+1}^{-1}&=\boldsymbol{P}_{k+1 \mid k}^{-1}+\boldsymbol{H}_{k+1}^{\mathrm{T}} \boldsymbol{R}_{k+1}^{-1} \boldsymbol{H}_{k+1}\\ &=\boldsymbol{P}_{k+1 \mid k}^{-1}+\sum_{i=1}^{N}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{H}_{k+1}^{i}\\ &=\boldsymbol{P}_{k+1 \mid k}^{-1}+\sum_{i=1}^{N}\left[\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1}-\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1}\right] \end{aligned} \tag{8} Pk+1k+11=Pk+1k1+Hk+1TRk+11Hk+1=Pk+1k1+i=1N(Hk+1i)T(Rk+1i)1Hk+1i=Pk+1k1+i=1N[(Pk+1k+1i)1(Pk+1ki)1](8)

P k + 1 ∣ k = Φ k + 1 , k P k ∣ k Φ k + 1 , k T + Γ k Q k Γ k T (9) \boldsymbol{P}_{k+1 \mid k}=\boldsymbol{\Phi}_{k+1, k} \boldsymbol{P}_{k \mid k} \boldsymbol{\Phi}_{k+1, k}^{\mathrm{T}}+\boldsymbol{\Gamma}_{k} \boldsymbol{Q}_{k} \boldsymbol{\Gamma}_{k}^\mathrm{T}\tag{9} Pk+1k=Φk+1,kPkkΦk+1,kT+ΓkQkΓkT(9)

其中, 式(8)中 P k + 1 ∣ k + 1 \boldsymbol{P}_{k+1 \mid k+1} Pk+1k+1 也可表示为:

P k + 1 ∣ k + 1 = [ I − K k + 1 H k + 1 ] P k + 1 ∣ k (10) \boldsymbol{P}_{k+1 \mid k+1}=\left[\boldsymbol{I}-\boldsymbol{K}_{k+1} \boldsymbol{H}_{k+1}\right] \boldsymbol{P}_{k+1 \mid k}\tag{10} Pk+1k+1=[IKk+1Hk+1]Pk+1k(10)

综合以上, 得到多传感器系统的集中状态估计表达式为:

X ^ k + 1 ∣ k + 1 = X ^ k + 1 ∣ k + ∑ i = 1 N K k + 1 i [ Z k + 1 i − H k + 1 i X ^ k + 1 ∣ k i ] (11) \hat{\boldsymbol{X}}_{k+1 \mid k+1}=\hat{\boldsymbol{X}}_{k+1 \mid k}+\sum_{i=1}^{N} \boldsymbol{K}_{k+1}^{i}\left[\boldsymbol{Z}_{k+1}^{i}-\boldsymbol{H}_{k+1}^{i} \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}\right]\tag{11} X^k+1k+1=X^k+1k+i=1NKk+1i[Zk+1iHk+1iX^k+1ki](11)

分散式KF的一种表达形式

根据式(1)和式(2), 与第 i i i个子导航传感器对应的卡尔曼滤波方程为:
X ^ k + 1 ∣ k + 1 i = X ^ k + 1 ∣ k i + K k + 1 i [ Z k + 1 i − H k + 1 i X ^ k + 1 ∣ k i ] (12) \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}=\hat{\boldsymbol{X}}_{k+1 \mid k}^{i}+\boldsymbol{K}_{k+1}^{i}\left[\boldsymbol{Z}_{k+1}^{i}-\boldsymbol{H}_{k+1}^{i} \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}\right]\tag{12} X^k+1k+1i=X^k+1ki+Kk+1i[Zk+1iHk+1iX^k+1ki](12)

K k + 1 i = P k + 1 ∣ k + 1 i ( H k + 1 i ) T ( R k + 1 i ) − 1 (13) \boldsymbol{K}_{k+1}^{i}=\boldsymbol{P}_{k+1 \mid k+1}^{i}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1}\tag{13} Kk+1i=Pk+1k+1i(Hk+1i)T(Rk+1i)1(13)

( P k + 1 ∣ k + 1 i ) − 1 = ( P k + 1 ∣ k i ) − 1 + ( H k + 1 i ) T ( R k + 1 i ) − 1 H k + 1 i (14) \left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1}=\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1}+\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{H}_{k+1}^{i}\tag{14} (Pk+1k+1i)1=(Pk+1ki)1+(Hk+1i)T(Rk+1i)1Hk+1i(14)

X ^ k + 1 ∣ k i = Φ k + 1 , k X ^ k ∣ k i (15) \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}=\boldsymbol{\Phi}_{k+1, k} \hat{\boldsymbol{X}}_{k \mid k}^{i}\tag{15} X^k+1ki=Φk+1,kX^kki(15)

P k + 1 ∣ k i = Φ k + 1 , k P k ∣ k i Φ k + 1 , k T + Γ k Q k Γ k T (16) \boldsymbol{P}_{k+1 \mid k}^{i}=\boldsymbol{\Phi}_{k+1, k} \boldsymbol{P}_{k \mid k}^{i} \boldsymbol{\Phi}_{k+1, k}^{\mathrm{T}}+\boldsymbol{\Gamma}_{k} \boldsymbol{Q}_{k} \boldsymbol{\Gamma}_{k}^{T}\tag{16} Pk+1ki=Φk+1,kPkkiΦk+1,kT+ΓkQkΓkT(16)

展开式(5)右边, 合并后有:

X ^ k + 1 ∣ k + 1 = [ I − K k + 1 H k + 1 ] X ^ k + 1 ∣ k + K k + 1 Z k + 1 (17) \hat{\boldsymbol{X}}_{k+1 \mid k+1}=\left[\boldsymbol{I}-\boldsymbol{K}_{k+1} \boldsymbol{H}_{k+1}\right] \hat{\boldsymbol{X}}_{k+1 \mid k}+\boldsymbol{K}_{k+1} \boldsymbol{Z}_{k+1}\tag{17} X^k+1k+1=[IKk+1Hk+1]X^k+1k+Kk+1Zk+1(17)
由式10可得:
I − K k + 1 H k + 1 = P k + 1 ∣ k + 1 P k + 1 ∣ k − 1 (18) \boldsymbol{I}-\boldsymbol{K}_{k+1} \boldsymbol{H}_{k+1}= \boldsymbol{P}_{k+1 \mid k+1} \boldsymbol{P}_{k+1 \mid k}^{-1}\tag{18} IKk+1Hk+1=Pk+1k+1Pk+1k1(18)
从式(12)可推出:

X ^ k + 1 ∣ k + 1 i = [ I − P k + 1 ∣ k + 1 i ( H k + 1 i ) T ( R k + 1 i ) − 1 H k + 1 i ] X ^ k + 1 ∣ k i + P k + 1 ∣ k + 1 i ( H k + 1 i ) T ( R k + 1 i ) − 1 Z k + 1 i (19) \begin{aligned} \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}=&\left[\boldsymbol{I}-\boldsymbol{P}_{k+1 \mid k+1}^{i}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{H}_{k+1}^{i}\right] \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}\\ &+\boldsymbol{P}_{k+1 \mid k+1}^{i}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{Z}_{k+1}^{i} \end{aligned} \tag{19} X^k+1k+1i=[IPk+1k+1i(Hk+1i)T(Rk+1i)1Hk+1i]X^k+1ki+Pk+1k+1i(Hk+1i)T(Rk+1i)1Zk+1i(19)

这里隐含假定所有出现的矩阵求逆都是存在的, 并且 P 0 \boldsymbol{P}_{0} P0为非奇异的。由式(7)可得:

K k + 1 Z k + 1 = P k + 1 ∣ k + 1 H k + 1 T R k + 1 − 1 Z k + 1 = P k + 1 ∣ k + 1 [ ( H k + 1 1 ) T , ( H k + 1 2 ) T , ⋯   , ( H k + 1 N ) T ] ⋅      diag ⁡ { ( R k + 1 1 ) − 1 , ( R k + 1 2 ) − 1 , ⋯   , ( R k + 1 N ) − 1 } ⋅      [ ( Z k + 1 1 ) T , ( Z k + 1 2 ) T , ⋯   , ( Z k + 1 N ) T ] T = P k + 1 ∣ k + 1 ∑ i = 1 N ( H k + 1 i ) T ( R k + 1 i ) − 1 Z k + 1 i (20) \begin{aligned} \boldsymbol{K}_{k+1} \boldsymbol{Z}_{k+1} & =\boldsymbol{P}_{k+1 \mid k+1} \boldsymbol{H}_{k+1}^{\mathrm{T}} \boldsymbol{R}_{k+1}^{-1} \boldsymbol{Z}_{k+1} \\ & =\boldsymbol{P}_{k+1 \mid k+1}\left[\left(\boldsymbol{H}_{k+1}^{1}\right)^{\mathrm{T}},\left(\boldsymbol{H}_{k+1}^{2}\right)^{\mathrm{T}}, \cdots,\left(\boldsymbol{H}_{k+1}^{N}\right)^{\mathrm{T}}\right] \cdot \\ &\ \ \ \ \operatorname{diag}\left\{\left(\boldsymbol{R}_{k+1}^{1}\right)^{-1},\left(\boldsymbol{R}_{k+1}^{2}\right)^{-1}, \cdots,\left(\boldsymbol{R}_{k+1}^{N}\right)^{-1}\right\} \cdot \\&\ \ \ \ \left[\left(\boldsymbol{Z}_{k+1}^{1}\right)^{\mathrm{T}},\left(\boldsymbol{Z}_{k+1}^{2}\right)^{\mathrm{T}}, \cdots,\left(\boldsymbol{Z}_{k+1}^{N}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \\ & =\boldsymbol{P}_{k+1 \mid k+1} \sum_{i=1}^{N}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{Z}_{k+1}^{i} \end{aligned} \tag{20} Kk+1Zk+1=Pk+1k+1Hk+1TRk+11Zk+1=Pk+1k+1[(Hk+11)T,(Hk+12)T,,(Hk+1N)T]    diag{(Rk+11)1,(Rk+12)1,,(Rk+1N)1}    [(Zk+11)T,(Zk+12)T,,(Zk+1N)T]T=Pk+1k+1i=1N(Hk+1i)T(Rk+1i)1Zk+1i(20)

对于式(20)中 ( H k + 1 i ) T ( R k + 1 i ) − 1 Z k + 1 i \left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{Z}_{k+1}^{i} (Hk+1i)T(Rk+1i)1Zk+1i 部分, 利用式(19)可得:

( H k + 1 i ) T ( R k + 1 i ) − 1 Z k + 1 i = ( P k + 1 ∣ k + 1 i ) − 1 X ^ k + 1 ∣ k + 1 i − ( P k + 1 ∣ k + 1 i ) − 1 ⋅ [ I − P k + 1 ∣ k + 1 i ( H k + 1 i ) T ( R k + 1 i ) − 1 H k + 1 i ] X ^ k + 1 ∣ k i (21) \begin{aligned} \left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{Z}_{k+1}^{i}=&\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}-\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1} \cdot \\ &\left[\boldsymbol{I}-\boldsymbol{P}_{k+1 \mid k+1}^{i}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{H}_{k+1}^{i}\right] \hat{\boldsymbol{X}}_{k+1\mid k}^{i} \end{aligned} \tag{21} (Hk+1i)T(Rk+1i)1Zk+1i=(Pk+1k+1i)1X^k+1k+1i(Pk+1k+1i)1[IPk+1k+1i(Hk+1i)T(Rk+1i)1Hk+1i]X^k+1ki(21)

类似于式(18), 有:

I − P k + 1 ∣ k + 1 i ( H k + 1 i ) T ( R k + 1 i ) − 1 H k + 1 i = P k + 1 ∣ k + 1 i ( P k + 1 ∣ k i ) − 1 (22) \boldsymbol{I}-\boldsymbol{P}_{k+1 \mid k+1}^{i}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{H}_{k+1}^{i}=\boldsymbol{P}_{k+1 \mid k+1}^{i}\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1}\tag{22} IPk+1k+1i(Hk+1i)T(Rk+1i)1Hk+1i=Pk+1k+1i(Pk+1ki)1(22)

将式(22)代入式(21)有:

( H k + 1 i ) T ( R k + 1 i ) − 1 Z k + 1 i = ( P k + 1 ∣ k + 1 i ) − 1 X ^ k + 1 ∣ k + 1 i − ( P k + 1 ∣ k i ) − 1 X ^ k + 1 ∣ k i (23) \left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{Z}_{k+1}^{i}=\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}-\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}\tag{23} (Hk+1i)T(Rk+1i)1Zk+1i=(Pk+1k+1i)1X^k+1k+1i(Pk+1ki)1X^k+1ki(23)

将式(18)、式(20)、式(23)代入式(17)有:

X ^ k + 1 ∣ k + 1 = P k + 1 ∣ k + 1 { P k + 1 ∣ k − 1 X ^ k + 1 ∣ k + ∑ i = 1 N [ ( P k + 1 ∣ k + 1 i ) − 1 X ^ k + 1 ∣ k + 1 i − ( P k + 1 ∣ k i ) − 1 X ^ k + 1 ∣ k i ] } (24) \hat{\boldsymbol{X}}_{k+1 \mid k+1}=\boldsymbol{P}_{k+1 \mid k+1}\left\{\boldsymbol{P}_{k+1 \mid k}^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k}+\sum_{i=1}^{N}\left[\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}-\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}\right]\right\}\tag{24} X^k+1k+1=Pk+1k+1{Pk+1k1X^k+1k+i=1N[(Pk+1k+1i)1X^k+1k+1i(Pk+1ki)1X^k+1ki]}(24)

为此, 当式(12)-(16)给出了子滤波器的状态估计时, 式(24)代表了 N N N个子导航系统在融合中心的最优估计的表达形式。式(24)中 P k + 1 ∣ k + 1 、 P k + 1 ∣ k 、 X ^ k + 1 ∣ k \boldsymbol{P}_{k+1 \mid k+1} 、 \boldsymbol{P}_{k+1 \mid k} 、 \hat{\boldsymbol{X}}_{k+1 \mid k} Pk+1k+1Pk+1kX^k+1k 分别由式(8)、式(9)和式(6)给出。

对于与第 i i i个子导航传感器对应的子滤波器 i i i , 如果在 k + 1 k+1 k+1时刻检测到故障发生, 则该子滤波器只进行时间更新, 即 X ^ k + 1 ∣ k + 1 i = X ^ k + 1 ∣ k i \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}=\hat{\boldsymbol{X}}_{k+1 \mid k}^{i} X^k+1k+1i=X^k+1ki , P k + 1 ∣ k + 1 i = P k + 1 ∣ k i \boldsymbol{P}_{k+1 \mid k+1}^{i}=\boldsymbol{P}_{k+1 \mid k}^{i} Pk+1k+1i=Pk+1ki 。此时, 根据式(24), 第 i i i个子滤波器不参与系统级的信息融合, 进而对第 i i i个子滤波器进行隔离, 并自动对系统进行重组 。
以上分析说明, 式(24)的分散模型不仅具有集中KF的最优特性, 同时具有联邦KF较好的容错特性

总结(分散式KF两种形式)

P k + 1 ∣ k + 1 − 1 = P k + 1 ∣ k − 1 + ∑ i = 1 N ( H k + 1 i ) T ( R k + 1 i ) − 1 H k + 1 i X ^ k + 1 ∣ k + 1 = P k + 1 ∣ k + 1 { P k + 1 ∣ k − 1 X ^ k + 1 ∣ k + ∑ i = 1 N [ ( H k + 1 i ) T ( R k + 1 i ) − 1 Z k + 1 i ] } (25) \begin{aligned} \boldsymbol{P}_{k+1 \mid k+1}^{-1}&=\boldsymbol{P}_{k+1 \mid k}^{-1}+\sum_{i=1}^{N}\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{H}_{k+1}^{i}\\ \hat{\boldsymbol{X}}_{k+1 \mid k+1}&=\boldsymbol{P}_{k+1 \mid k+1}\left\{\boldsymbol{P}_{k+1 \mid k}^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k}+\sum_{i=1}^{N}\left[\left(\boldsymbol{H}_{k+1}^{i}\right)^{\mathrm{T}}\left(\boldsymbol{R}_{k+1}^{i}\right)^{-1} \boldsymbol{Z}_{k+1}^{i}\right]\right\} \end{aligned} \tag{25} Pk+1k+11X^k+1k+1=Pk+1k1+i=1N(Hk+1i)T(Rk+1i)1Hk+1i=Pk+1k+1{Pk+1k1X^k+1k+i=1N[(Hk+1i)T(Rk+1i)1Zk+1i]}(25)

P k + 1 ∣ k + 1 − 1 = P k + 1 ∣ k − 1 + ∑ i = 1 N [ ( P k + 1 ∣ k + 1 i ) − 1 − ( P k + 1 ∣ k i ) − 1 ] X ^ k + 1 ∣ k + 1 = P k + 1 ∣ k + 1 { P k + 1 ∣ k − 1 X ^ k + 1 ∣ k + ∑ i = 1 N [ ( P k + 1 ∣ k + 1 i ) − 1 X ^ k + 1 ∣ k + 1 i − ( P k + 1 ∣ k i ) − 1 X ^ k + 1 ∣ k i ] } (26) \begin{aligned} \boldsymbol{P}_{k+1 \mid k+1}^{-1}&=\boldsymbol{P}_{k+1 \mid k}^{-1}+\sum_{i=1}^{N}\left[\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1}-\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1}\right]\\ \hat{\boldsymbol{X}}_{k+1 \mid k+1}&=\boldsymbol{P}_{k+1 \mid k+1}\left\{\boldsymbol{P}_{k+1 \mid k}^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k}+\sum_{i=1}^{N}\left[\left(\boldsymbol{P}_{k+1 \mid k+1}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k+1}^{i}-\left(\boldsymbol{P}_{k+1 \mid k}^{i}\right)^{-1} \hat{\boldsymbol{X}}_{k+1 \mid k}^{i}\right]\right\} \end{aligned} \tag{26} Pk+1k+11X^k+1k+1=Pk+1k1+i=1N[(Pk+1k+1i)1(Pk+1ki)1]=Pk+1k+1{Pk+1k1X^k+1k+i=1N[(Pk+1k+1i)1X^k+1k+1i(Pk+1ki)1X^k+1ki]}(26)

  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值