bzoj1007【hnoi2008】水平可见直线

1007: [HNOI2008]水平可见直线

Time Limit: 1 Sec   Memory Limit: 162 MB
Submit: 4537   Solved: 1669
[ Submit][ Status][ Discuss]

Description

 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
    例如,对于直线:
    L1:y=x; L2:y=-x; L3:y=0
    则L1和L2是可见的,L3是被覆盖的.
    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi 

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2



计算几何    

本体做法比较直观,先按斜率从小到大排序,再将斜率最小的两条直线如栈。对于每条直线,如果其与栈顶直线的交点在上一个点的左边,就将栈顶直线出栈。方法正确性很好证明,因大家自行脑补。




#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 50001
#define F(i,j,k) for(int i=j;i<=k;i++)
#define D(i,j,k) for(int i=j;i>=k;i--)
#define eps 1e-8
using namespace std;
struct Data
{
	double a,b;
	int num;
}l[MAXN],s[MAXN];
int n,top=0,ans[MAXN];
bool cmp(Data x,Data y)
{
	if (fabs(x.a-y.a)<eps) return x.b<y.b;
	else return x.a<y.a;
}
double cross_x(Data x,Data y)
{
	return (x.b-y.b)/(y.a-x.a);
}
int main()
{
	scanf("%d",&n);
	F(i,1,n)
	{
		scanf("%lf%lf",&l[i].a,&l[i].b);
		l[i].num=i;
	}
	sort(l+1,l+n+1,cmp);
	F(i,1,n)
	{
		while (top)
		{
			if (fabs(s[top].a-l[i].a)<eps) top--;
			else if (top>1&&cross_x(s[top-1],l[i])<=cross_x(s[top-1],s[top])) top--;
			else break;
		}
		s[++top]=l[i];
	}
	memset(ans,0,sizeof(ans));
	F(i,1,top) ans[s[i].num]=1;
	F(i,1,n) if (ans[i]) printf("%d ",i);
	printf("\n");
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值