在xoy直角坐标平面上有n条直线L1,L2,…Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
对于三条不平行直线(平行特判一下就好),按照斜率排序后,若2与3交点在1与2交点左边,则2就会被1和3完全覆盖,画画图可以想明白。
先按照斜率排序,然后用栈维护一下。
#include<iostream>
#include<cstdio>
#include<stack>
#include<algorithm>
using namespace std;
stack<int> s;
struct X{double x,b;int id;}e[50005];
bool cmp(X a,X b)
{
if(a.x!=b.x)
return a.x<b.x;
return a.b<b.b;
}
double get(int i,int j)
{
double m=e[i].x-e[j].x;
double ans=e[j].b-e[i].b;
return ans/m;
}
int a[50005];
int main()
{
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&e[i].x,&e[i].b);
e[i].id=i;
}
sort(e+1,e+n+1,cmp);
for(int i=1;i<=n;i++)
{
if(s.size())
{
int d=s.top();
while(e[d].x==e[i].x)
{
if(e[d].b<e[i].b)
s.pop();
if(s.size()) d=s.top();
else break;
}
}
while(s.size()>1)
{
int d=s.top();
s.pop();
int w=s.top();
s.push(d);
double q=get(d,i),t=get(w,d);
if(t>=q)
s.pop();
else break;
}
s.push(i);
}
while(!s.empty())
{
int d=s.top();
a[++a[0]]=e[d].id;
s.pop();
}
sort(a+1,a+a[0]+1);
for(int i=1;i<=a[0];i++)
printf("%d ",a[i]);
return 0;
}