bzoj 1007 水平可见直线 贪心+初中数学

在xoy直角坐标平面上有n条直线L1,L2,…Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

对于三条不平行直线(平行特判一下就好),按照斜率排序后,若2与3交点在1与2交点左边,则2就会被1和3完全覆盖,画画图可以想明白。
先按照斜率排序,然后用栈维护一下。

#include<iostream>
#include<cstdio>
#include<stack>
#include<algorithm>
using namespace std;
stack<int> s;
struct X{double x,b;int id;}e[50005];
bool cmp(X a,X b)
{
    if(a.x!=b.x)
        return a.x<b.x;
    return a.b<b.b;
}
double get(int i,int j)
{
    double m=e[i].x-e[j].x;
    double ans=e[j].b-e[i].b;
    return ans/m;
}
int a[50005];
int main()
{
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%lf%lf",&e[i].x,&e[i].b);
        e[i].id=i;
    }
    sort(e+1,e+n+1,cmp);
    for(int i=1;i<=n;i++)
    {
        if(s.size())
        {
            int d=s.top();
            while(e[d].x==e[i].x)
            {
                if(e[d].b<e[i].b)
                    s.pop();
                if(s.size()) d=s.top();
                else    break;
            }
        }
        while(s.size()>1)
        {
            int d=s.top();
            s.pop();
            int w=s.top();
            s.push(d);
            double q=get(d,i),t=get(w,d);
            if(t>=q)
                s.pop();
            else    break;
        }
        s.push(i);
    }
    while(!s.empty())
    {
        int d=s.top();
        a[++a[0]]=e[d].id;
        s.pop();
    }
    sort(a+1,a+a[0]+1);
    for(int i=1;i<=a[0];i++)
        printf("%d ",a[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值