1.1 TensorFlow 计算图的使用

这篇博客介绍了TensorFlow的使用流程,包括定义计算图和执行计算。内容强调了默认计算图的概念,并展示了如何创建和操作不同的计算图。通过示例说明了在同一设备上不同计算图中的变量是隔离的,不会共享状态。此外,还提到了TensorFlow如何指定设备进行计算,如使用GPU。
摘要由CSDN通过智能技术生成

TensorFlow的使用一般分为两个阶段

1. 定义计算图中的所有计算

2. 执行计算

import tensorflow as tf
a = tf.constant([1.0,2.0],name='a')
b = tf.constant([2.0,3.0],name='b')
result = a + b

如果说我们没有指定计算图的话

张量就会存储到默认图中

print(a.graph is tf.get_default_graph())

可以用以上方法查询张量所属的图

 

Tensorflow支持生成新的计算图

不同计算图的张量和运算都是隔离的,不会共享

# 生成计算图1
g1 = tf.Graph()

with g1.as_default():
    # 在计算图1中定义 v 初始化为0
    v = tf.get_variable('v',shape=[1],initializer = tf.zeros_initializer)

# 生成计算图2
g2 = tf.Graph()
with g2.as_default():
    # 在计算图2中定义 v 初始化为1
    v = tf.get_variable('v',shape=[1],initializer = tf.ones_initializer)
    
# 在计算图1中读取变量v
with tf.Session(graph=g1) as sess:
    #执行初始化
    tf.global_variables_initializer().run()
    with tf.variable_scope('',reuse=True):
        print(sess.run(tf.get_variable('v')))
        
# 在计算图2中读取变量v
with tf.Session(graph=g2) as sess:
    #执行初始化
    tf.global_variables_initializer().run()
    with tf.variable_scope('',reuse=True):
        print(sess.run(tf.get_variable('v')))

tensorflow 可以指定运行设备,提供gpu计算

g = tf.Graph()
with g.device('/gpu:0'):
    result = a + b

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值