GPU 加速出图全攻略!Stable Diffusion 零基础入门,手把手教你完成超详细安装与配置教程

第一****步:查电脑CUDA的版本

cmd直接输入nvidia-smi

img

第二部:CUDA toolkit Download

https://developer.nvidia.com/cuda-toolkit-archive

点进去,按照如下配置选择,然后点击下载:

img

img

下载完成后,双击exe安装。

安装cuda时,第一次会让设置临时解压目录,第二次会让设置安装目录;

临时解压路径,建议默认即可,也可以自定义。安装结束后,临时解压文件夹会自动删除;

安装目录,建议默认即可;

注意:临时解压目录不要和cuda的安装路径设置一样,否则安装结束,会找不到安装目录!此处我将临时安装目录设置到非系统盘路径,但是注意要选择空文件夹,否则会报错。

选择自定义安装

安装完成后,配置cuda的环境变量;

命令行中,测试是否安装成功;

双击“exe文件”,选择下载路径(推荐默认路径)

img

img

img

同意并继续

img

选择自定义安装,精简版本是下载好所有组件,并且会覆盖原有驱动,所以在这里推荐自定义下载。

img

如果你是第一次安装,尽量全选

如果你是第n次安装,尽量只选择第一个,不然会出现错误。

img

此处安装目录不建议修改,因为后期开发中很多报错来源于路径问题。

img

img

img

打开控制面板即可发现安装了一大堆配置和驱动文件。

img

查看环境变量

点击设置–>搜索高级系统设置–>查看环境变量

【如果没有需要自己添加】

img

一共两个系统变量,是自动生成的。

验证CUDA是否安装成功:

win+R键运行cmd,输入nvcc --version 即可查看版本号;

set cuda,可以查看 CUDA 设置的环境变量。

此时,CUDA安装已经成功,但是在完成张量加速运算时还需要cuDNN的辅助,因此下面安装cuDNN。

第三步:cuDNN下载及安装

cuDNN下载

cuDNN地址如下,不过要注意的是,我们需要注册一个账号,才可以进入到下载界面。大家可以放心注册的。

https://developer.nvidia.com/rdp/cudnn-download

没有账号的根据网站提示进行账号注册激活后,进行下载

使用下面网址,查看适配的 cuDNN

https://developer.nvidia.com/rdp/cudnn-archive

选择跟自己的cuda版本适配的cudnn版本,此处我安装的是CUDA12.0,因此我选取下面的版本:

img

img

下载结果是一个压缩包

img

第四步:cuDNN配置

cuDNN叫配置更为准确,我们先把下载的 cuDNN 解压缩,会得到下面的文件:

img

下载后发现其实cudnn不是一个exe文件,而是一个压缩包,解压后,有三个文件夹,把三个文件夹拷贝到cuda的安装目录下。

CUDA 的安装路径在前面截图中有,或者打开电脑的环境变量查看,我的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0

拷贝时看到,CUDA 的安装目录中,有和 cuDNN 解压缩后的同名文件夹,这里注意,不需要担心,直接复制即可。cuDNN 解压缩后的同名文件夹中的配置文件会添加到 CUDA安装目录中的同名文件夹中。【此处还是建议还是分别把文件夹的内容复制到对应文件夹中去】

cuDNN 其实是 CUDA 的一个补丁,专为深度学习运算进行优化的。然后再添加环境变量

img

复制完成后添加至系统变量:

往系统环境变量中的 path 添加如下路径(根据自己的路径进行修改)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\libnvvp

img

验证配置是否成功配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwidthTest.exe:

首先win+R启动cmd,cd到安装目录下的

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\extras\demo_suite

然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),得到下图:

img

img

至此,CUDA与cuDNN就安装完成了。

第五步:安装pytorch

先在pycharm打开项目,在项目Termianl一栏输入如下代码,卸载torch包,给等下安装的gpu版本腾位置

  • pip uninstall torch

  • pip uninstall torchvision

  • pip uninstall torchaudio

  • img

卸载完成后,安装gpu版本的torch,访问https://pytorch.org/get-started/previous-versions/找到与您CUDA版本一致的,老徐的CUDA版本是12.0,未能找到一致的。因此选择的是2.0.0

img

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

在pycharm的terminal界面,复制上去,回车执行,等待下载完成即可。

img

img

第六步:设置项目使用GPU出图

删除使用CPU出图时设置的参数:COMMANDLINE_ARGS:–skip-torch-cuda-test --no-half

img

然后找到文件launch.py,右键,单击run,就可以体验快速出图效果了。
现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值