【Pytorch安装】最简单易懂的CUDA+Pytorch安装(pip方式)

前排提醒

可能比较啰嗦,可以直接点击目录跳转。

途中若进不去网站,可尝试魔法。

你可能在别的贴中看到通过Anaconda进行,但Pytorch现在已经不支持conda安装,故改用了pip安装。但可以通过Anaconda进行测试,查看Pytorch是否安装成功。

环境:Win11

一、安装CUDA

1.查看版本(N卡)

开始菜单搜索NVIDIA Control Panel,当然后台直接右键也行。记好版本。

2.下载CUDA

因为要安装Pytorch,所以CUDA不一定要安装最新的

首先进入Pytorch官网,下滑确认Pytorch所需的CUDA版本:PyTorch

我安装的时候最新的CUDA是12.8,考虑后还是安12.6吧。

打开1. CUDA 12.8 Update 1 发行说明 — 发行说明 12.8 文档

往下滑,确认自己应该安装的版本。

官网:CUDA Toolkit Archive | NVIDIA Developer

寻找版本并下载。

3.安装CUDA

选择包的路径(后期会自动删,所以不动就行),安装选项都行,我选了精简(建议默认路径)。完事关闭就行了。

4.下载cuDNN(深度学习网络库)

地址:cuDNN Archive | NVIDIA Developer

一般下载最新的就行。

5.覆盖

如果之前采用精简安装或者默认路径,那么CUDA的位置应该是:(版本可能不同,注意)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6

解压下载的cuDNN压缩包,将解压出的3个文件夹扔到上面目录进行覆盖。

6.检查是否安装成功

参考自:电脑配置cuda11.3+cudann+torch踩坑,详细版-CSDN博客

检查下面三个地方是否有问题(ab为CUDA,c为cuDNN)。如无,则安装成功。

a.检查系统变量(该页面位置在 此电脑右键-属性-高级系统设置-高级-环境变量)

b.Win+R,cmd,输入nvcc -V

c.打开CUDA目录(目录位置参考 5.覆盖),在指定位置输入cmd;黑框中输入bandwidthTest.exe,检查Result = PASS;再输入deviceQuery.exe,检查Result = PASS

二、安装Pytorch

此处使用pip安装,如不成功可参考该博主贴的Pytorch安装部分:Pytorch安装教程(最全最详细版)-CSDN博客

1.获取安装命令

进入Pytorch官网,下滑,他们给出了一个好用的生成命令工具。

根据你的需要进行选择,会给出使用什么命令进行安装。

复制Run this Command后的指令。

Pytorch官网:PyTorch

2.使用pip进行安装

Win+R,输入cmd,粘贴指令回车,进行安装即可。

很慢,但用魔法还算是能下。最好不要同时干别的。

3.测试验证(使用Anaconda)

如果没有安装,可以参考我的另一个贴:【Anaconda安装】最简洁易懂的Anaconda安装流程-CSDN博客

开始菜单打开Anaconda PowerShell Prompt,没有可以尝试搜索。

依次“输入+回车”下方内容,最后检查是否是图中结果。如果是则说明安装成功。

python
import torch
torch.__version__
torch.cuda.is_available()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值