前排提醒
可能比较啰嗦,可以直接点击目录跳转。
途中若进不去网站,可尝试魔法。
你可能在别的贴中看到通过Anaconda进行,但Pytorch现在已经不支持conda安装,故改用了pip安装。但可以通过Anaconda进行测试,查看Pytorch是否安装成功。
环境:Win11
一、安装CUDA
1.查看版本(N卡)
开始菜单搜索NVIDIA Control Panel,当然后台直接右键也行。记好版本。
2.下载CUDA
因为要安装Pytorch,所以CUDA不一定要安装最新的。
首先进入Pytorch官网,下滑确认Pytorch所需的CUDA版本:PyTorch
我安装的时候最新的CUDA是12.8,考虑后还是安12.6吧。
打开1. CUDA 12.8 Update 1 发行说明 — 发行说明 12.8 文档
往下滑,确认自己应该安装的版本。
官网:CUDA Toolkit Archive | NVIDIA Developer
寻找版本并下载。
3.安装CUDA
选择包的路径(后期会自动删,所以不动就行),安装选项都行,我选了精简(建议默认路径)。完事关闭就行了。
4.下载cuDNN(深度学习网络库)
地址:cuDNN Archive | NVIDIA Developer
一般下载最新的就行。
5.覆盖
如果之前采用精简安装或者默认路径,那么CUDA的位置应该是:(版本可能不同,注意)
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6
解压下载的cuDNN压缩包,将解压出的3个文件夹扔到上面目录进行覆盖。
6.检查是否安装成功
参考自:电脑配置cuda11.3+cudann+torch踩坑,详细版-CSDN博客
检查下面三个地方是否有问题(ab为CUDA,c为cuDNN)。如无,则安装成功。
a.检查系统变量(该页面位置在 此电脑右键-属性-高级系统设置-高级-环境变量)
b.Win+R,cmd,输入nvcc -V
c.打开CUDA目录(目录位置参考 5.覆盖),在指定位置输入cmd;黑框中输入bandwidthTest.exe,检查Result = PASS;再输入deviceQuery.exe,检查Result = PASS
二、安装Pytorch
此处使用pip安装,如不成功可参考该博主贴的Pytorch安装部分:Pytorch安装教程(最全最详细版)-CSDN博客
1.获取安装命令
进入Pytorch官网,下滑,他们给出了一个好用的生成命令工具。
根据你的需要进行选择,会给出使用什么命令进行安装。
复制Run this Command后的指令。
Pytorch官网:PyTorch
2.使用pip进行安装
Win+R,输入cmd,粘贴指令回车,进行安装即可。
很慢,但用魔法还算是能下。最好不要同时干别的。
3.测试验证(使用Anaconda)
如果没有安装,可以参考我的另一个贴:【Anaconda安装】最简洁易懂的Anaconda安装流程-CSDN博客
开始菜单打开Anaconda PowerShell Prompt,没有可以尝试搜索。
依次“输入+回车”下方内容,最后检查是否是图中结果。如果是则说明安装成功。
python
import torch
torch.__version__
torch.cuda.is_available()