- 博客(32)
- 收藏
- 关注
原创 python虚拟环境创建笔记,并加入jupyter内核
在 Jupyter Notebook 的界面中,打开一个新的或已有的 notebook 文件。然后,点击上方的 “Kernel” 菜单,选择 “Change Kernel”,接着选择刚刚添加的虚拟环境 kernel(即 myenv)。将 kernel-name 替换为要删除的内核的实际名称。这里的 myenv 是虚拟环境的名称,可以自行替换。将 myenv 替换为要删除的虚拟环境的名称。显示系统上存在的所有虚拟环境。
2024-03-13 15:32:38 786
原创 DAWG库下载出现的问题
打开anaconda prompt ,切换目录到文件安装目录,然后pip install 手动安装。今天配置一些环境出现了报错需要下载DAWG-0.8.0-cp38-cp38-win_amd64,下载DAWG-0.8.0-cp38-cp38-macosx_10_14_x86_64.whl。只找到了mac版本,没发现windows版本。
2024-03-06 15:33:48 271
原创 python离线安装包的方法
3.下载完成后,进入opencv_python-3.4.11.45-cp39-cp39-win_amd64.whl文件所在目录执行安装。https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/<包名>/选择opencv_python-3.4.11.45-cp39-cp39-win_amd64.whl。1.访问对应安装包的镜像文件的网站。以安装opencv为例,访问。2.找到适合自己的whl文件。
2023-10-13 19:57:55 1621
原创 文献阅读-无人机+RGB+多光谱 测猕猴桃叶面积指数
LAI是反映植被生长的重要参数,对于猕猴桃的生长、产量估计和田间管理有重要意义。作者利用无人机搭载的数字相机获取高分辨率的RGB图像,提取颜色和纹理特征,建立LAI的估计模型。作者选取了中国陕西省杨凌农业高新技术示范区的一个猕猴桃果园作为研究区域,使用CI-110仪器对80个样点的LAI进行了非破坏性测量。同时,使用DJI Phantom 4 PRO无人机在2021年5月至7月分别获取了三个生长阶段(初花期、幼果期和果实膨大期)的RGB图像,使用Agisoft PhotoScan软件进行了正射校正和拼接。
2023-09-12 10:42:13 638
原创 文献阅读-果实检测和计数的比较研究用于苹果园产量映射
Detection检测当水果可以通过颜色区分时,用户监督的GMM模型是很难被打败的。如果颜色特征不明显,U‐Net表现较好。GMM在大多数情况下表现优于深度学习模型Counting计数将水果计数作为一个多分类问题,对苹果图像块训练CNN,然后通过网络进行分类。深度学习的方法在4个实验数据集上表现均优于GMM。
2023-08-23 16:31:22 607 1
原创 文献翻译工具
(2)效果不好,试试免费的腾讯交互翻译:https://transmart.qq.com/zh-CN/file。(3)效果最好的是小绿鲸翻译:https://www.xljsci.com/editor/(1)使用谷歌翻译(需要tz):https://translate.google.vg/(4)将翻译好的文档通过https://www.cleverpdf.com/cn。每个用户每个月3次全文翻译机会,开会员149一年,每个月30次。主要用到谷歌翻译、DEEPL翻译、腾讯交互翻译、小绿鲸翻译。
2023-08-02 16:53:17 135
原创 卷积神经网络简介(MNIST分类)--python深度学习
由传入 Conv2D 层的第一个参数所控制(32 或 64)。下一步是将最后的输出张量[大小为 (3, 3, 64)]输入到一个密集连接分类器网络中,即 Dense 层的堆叠。这些分类器可以处理 1D 向量,而当前的输出是 3D 张量。进行 10 类别分类,最后一层使用带 10 个输出的 softmax 激活。宽度和高度两个维度的尺寸通常会随着网络加深而变小。,然后在上面添加几个 Dense 层。在进入两个 Dense 层之前,形状。查看目前卷积神经网络的架构。层的输出都是一个形状为。
2023-06-04 12:52:27 234
原创 过拟合解决办法(代码)--python深度学习
防止过拟合的最简单的方法就是减小模型大小,即减少模型中可学习参数的个数(这由层数和每层的单元个数决定)。在深度学习中,模型中可学习参数的个数通常被称为模型的容量(capacity)。这里的简单模型(simple model)是指参数值分布的熵更小的模型(或参数更少的模型)。(weight regularization),其实现方法是向网络损失函数中添加与较大权重值相关的成本(cost)。神经网络的 L2 正则化也叫权重衰减(weight decay),权重衰减与 L2 正则化在数学上是完全相同的。
2023-06-04 00:05:56 638
原创 如何选择最后一层激活和损失函数--python深度学习
Softmax 是用于多类分类问题的激活函数,在多类分类问题中,超过两个类标签则需要类成员关系。对于长度为 K 的任意实向量,Softmax 可以将其压缩为长度为 K,值在(0,1)范 围内,并且向量中元素的总和为 1 的实向量。ReLU函数其实就是一个取最大值函数,注意这并不是全区间可导的,但是我们可以取sub-gradient,如上图所示。由于输出值限定在 0 到 1,因此它对每个神经元的输出进行了归一化;由于概率的取值范围是 0 到 1,因此 Sigmoid 函数非常合适;
2023-06-03 23:27:48 324
原创 波士顿房价预测(回归问题)--python深度学习
预测 20 世纪 70 年代中期波士顿郊区房屋价格的中位数,已知当时郊区的一些数据点,比如犯罪率、当地房产税率等。它包含的数据点相对较少,只有 506 个,分为 404 个训练样本和 102 个测试样本。输入数据的每个特征(比如犯罪率)都有不同的取值范围。例如,有些特性是比例,取值范围为 0~ 1;有的取值范围为 1~ 12;还有的取值范围为 0~ 100,等等。(404, 13)(102, 13)13 个数值特征房价大都在 10 000~50 000 美元。
2023-06-03 21:41:51 2520
原创 数据张量的维度选择--python深度学习
向量数据:2D 张量,形状为 (samples, features)。时间序列数据或序列数据:3D 张量,形状为 (samples, timesteps, features)。图像:4D 张量,形状为 (samples, height, width, channels) 或 (samples, channels,height, width)。视频:5D 张量,形状为 (samples, frames, height, width, channels) 或 (samples, frames, cha
2023-05-26 21:08:30 107
原创 基于LSTM自动生成中文藏头诗
基于LSTM自动生成中文藏头诗一、 数据读入二、数据预处理1.对数据进行从字符到正整数的映射,并加以截断/补齐操作。2.提取因变量与自变量3.one-hot编码三、构建深度神经网络模型四、模型的训练及测试与RNN神经元一样,LSTM神经元在其管道中可以保持记忆,以允许解决顺序和时间问题,而不会出现影响其性能的消失梯度问题。使用古诗数据集,利用LSTM神经网络模型训练自动生成中文藏头诗。import pandas as pdimport stringimport numpy as npfrom t
2021-12-25 20:32:41 2403 4
原创 RNotes-lubridate
RNotes-lubridateRNotes-lubridate解析日期与时间lubridate从字符串转换为日期类型设置与提取信息三个函数 (处理时区信息)时间的运算RNotes-lubridatelubridate中所有解析函数都会返回POSIXct日期,默认都是用UTC时区。lubridate包主要有两类函数,一类是处理时点数据(time instants), 另一类是处理时段数据(time spans)#安装和载入lubridate包install.packages("lubridate")
2021-12-25 20:09:24 517
原创 Python for Data Science
Python_数据整理1.Data transformation数据转换1.1 Filter rows过滤筛选1.2 Arrange rows排列1.3 Select columns选择1.4 Add new variables添加新变量1.5 Grouped summaries分组汇总2.Tidy data数据整理2.1Pivoting旋转2.2 Separating and uniting分离与融合2.3 Missing values缺失值3.Relational data关系数据3.1 pd.merg
2021-12-09 17:12:28 1113
原创 Transformers实际应用案例
Transformers实际应用案例尝试使用transformers库提供的各种pipelineTransformers实际应用案例1--情感分类(Sequence Classification)2--智能填词(Masked Language Modeling)3--文本生成Text Generation4--抽取式问答Extractive Question Answering5--Translation翻译首先安装transformerspip install transformersimpo
2021-12-09 16:50:24 1825
原创 在jupyter notebook中安装R核心
在jupyter notebook中安装R核心1.从R官网安装R languagehttps://www.r-project.org/点击Download下面的CRAN找到China(中国镜像站)任意选择一个就好,这里推荐第一个清华镜像点击对应操作系统的链接,安装即可(接下来就是简单的普通安装,设置下载路径,一直点next即可)2.环境配置打开Anaconda中的Anaconda Prompt复制R的安装路径在anaconda prompt中切换工作路径接下来,直.
2021-09-01 20:46:18 2132 5
原创 集成学习综合实践
集成学习综合实践一、创建分类数据集二、Bagging三、Voting三、随机森林利用sklearn自己构建一组含有1000个样本点,6个特征,3个类别的分类数据集(随机种子取666),并利用学过的分类器模型(例如传统的分类模型:决策树、朴素贝叶斯、K近邻、BP神经网络、逻辑回归、支持向量机等,以及集成学习模型:Voting、Bagging、随机森林、AdaBoost、GBDT)对数据进行训练,充分利用交叉验证及网格搜索调优,尽可能地提高模型的分类效果。模型分类效果请通过混淆矩阵、ROC曲线、学习曲线、验
2021-06-10 23:17:09 413 3
原创 np.vstack(),np.hstack()和np.stack()的区别
np.vstack(),np.hstack()和np.stack()的区别示例数据:a = np.arange(1,7).reshape((2,3))b = np.arange(7,13).reshape((2,3))c = np.arange(13,19).reshape((2,3))print(a)print(b)print(c)a:[[1 2 3][4 5 6]]b:[[ 7 8 9][10 11 12]]c:[[13 14 15][16 17 18]]一、np
2021-03-25 22:46:14 1458
原创 Python中的深拷贝与浅拷贝
Python中的深拷贝与浅拷贝一.可变与不可变python数据类型对列表进行添加元素的方法列表方法list.copy() ---- `浅拷贝`copy模块中的copy()、deepcopy()函数二.Numpy中的深拷贝与浅拷贝共享内存地址的两个变量ndarray.view() ---- `浅拷贝`存取元素中的深拷贝与浅拷贝新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPant
2021-03-19 23:18:55 372
原创 词云图的绘制
文章目录词云图的绘制一、wordcloud库二、案例1.引入库2.读入数据3.plt.figure(figsize=(10,10))总结词云图的绘制提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、wordcloud库wordcloud.WordCloud()wordcloud.WordCloud引用文本class wor
2020-11-18 22:53:37 741
原创 大数据1941班兄弟姐妹们的技术博客链接
大数据1941班兄弟姐妹们的技术博客链接这里是湖北经济学院信息管理与统计学院大数据1941班同学们的技术博客链接指示板兄弟姐妹们快看过来~陈雨轩https://blog.csdn.net/weixin_46726459杨家伟https://blog.csdn.net/qq_50553471董泽江https://blog.csdn.net/weixin_46726467胡睿泽https://blog.csdn.net/weixin_49342084冯强龙https://bl
2020-09-28 00:28:08 425
原创 基于豆瓣评价的文本分析 ——以《流浪地球》为例
项目背景在电影行业飞速发展的当今,电影已经成为了非常普遍的娱乐选择,中国电影最近几年也是突飞猛进,越来越多的人走进电影院。而信息媒体的发展也使得所有人都拥有了随时随地与世界各地的人讨论电影的机会,电影无疑已经进入了全民关注,全民讨论时代。但是随着越来越多的电影上映,越来越大的阅片量,大家对电影质量和制作水平的要求也越来越高。电影出品方想要斩获高票房,就要把握好消费者的喜好,制作出符合市场期待的电影。在国内,豆瓣、淘票票、猫眼三家网站都有自己所属平台的评分功能,俨然形成了国内的“电影评分三巨头”。电影评
2020-09-27 22:57:41 7885 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人