【仿真基本功】【PyTorch】从头安装PyTorch【2025/02/21更新】
PyTorch完整安装步骤
注:下面提到的所有官网,都可以通过在任意搜索网站(如百度)上搜索对应名称而直接找到。
v1.1, 于2024/02/21更新(新装电脑)
v1.0, 于2024/03/14更新(重装电脑)
1. 安装Anaconda
去Anaconda官网,下载最新版本的Anaconda31。(注:PyTorch官网也推荐采用Anaconda进行包管理,因为Anaconda会安装所有的依赖库。)
【升级更新】
如果你电脑上已经安装了Anaconda的旧版本,可以打开Anaconda Navigator,直接在其中选择更新到最新版本。这样可以避免卸载再安装的麻烦。
2. 查看显卡对CUDA版本的支持
注:这里只考虑NVIDIA的显卡,其他显卡请自行查询相关信息。
进入命令行 2 ,输入
nvidia-smi
可以看到显卡支持的CUDA最高版本,如下图所示。
如果支持的版本较低,可以尝试更新CUDA的最新版本。
2025更新:2025年02月20日时获取的最新NVIDIA GPU驱动版本为572.42,支持的CUDA版本为12.8,但实际上后续PyTorch支持的版本最高只到12.6。不过由于CUDA的版本向下兼容,所以使用12.8的版本没有问题。
3. 查看PyTorch的安装需求
去PyTorch官网,查看PyTorch的安装需求。
目前(20230302)的安装需求是
- Python版本不低于Python 3.8。(在Python官网查询到目前Python目前的最新版本是3.12.2。【2025更新:目前最新版本为3.13.2,但不必执着于最新版本,建议采用3.12.9版本即可】)
- 稳定版本支持CUDA 12.1版本,小于等于显卡支持的CUDA最高版本12.4。因此,可以安装。【2025更新:目前建议用12.6版本】)
3)如果只想安装CPU版本的PyTorch,可以把“Compute Platform”部分从“CUDA 12.1”换成“CPU”。
确认满足安装需求后,保留浏览器该界面,第4步中需要用到这里的安装命令。
2025更新:2025年02月21日时,PyTorch官网已经不再可以使用Conda进行安装,选择Conda时会在“Run this Command”一栏提示“NOTE: Conda packages are no longer available. Please use pip instead.” 因此,需要改用Pip进行安装,即把上图中“Package”一栏的Conda改选为Pip即可。此时“PyTorch Build”的最新版为Stable 2.6.0,“Compute Platform”的最新版为CUDA 12.6,选择后,"Run this Command”一栏会出现指令
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
4. 安装 PyTorch
a) 配置新环境
建立 “pytorch0” 环境,要求 python 版本为目前最新的3.12.2(也可以自行选择其他符合要求的python版本)。其中的 “pytorch0” 也可以自由换为其他名称,符合命名要求即可。
conda create -n pytorch0 python=3.12.2
b) 进入新环境
conda activate pytorch0 # 进入 pytorch0 环境
c) 按照 CUDA 版本要求,必须小于等于显卡支持的 CUDA 最高版本。
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
(复制自 PyTorch 官网,见本文第二张图片。)【下面一行是2025更新后的命令】
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
这里解释一下上面的这段命令。conda install 是conda包管理器的安装命令,用于安装指定的一个或多个软件包,并且可以指定软件包的版本和安装渠道。该基本命令的形式如下:
conda install 包名1[[=版本1] 包名2[=版本2]] ... [-c 频道1 [-c 频道2]] ...
其中,包名部分与频道部分的顺序没有要求,各包彼此之间、各频道彼此之间也没有顺序要求。但是,所有包名必须在一起,所有频道必须在一起,否则会报错。
因此,上面那段命令的含义是:使用 conda 包管理器安装(conda install)支持 CUDA 12.1 的 PyTorch 深度学习框架及其相关扩展库 torchvision 和 torchaudio(pytorch torchvision torchaudio pytorch-cuda=12.1),从 PyTorch 和 NVIDIA 官方频道(-c pytorch -c nvidia)获取软件包。
d) 安装完成后,输入【python】,进入 python 控制台,然后输入
import torch
torch.__version__
如果没有报错且能够正常输出当前的 pytorch 版本,那么安装就顺利完成了。
e) 删除环境及其中所有安装的所有包
如果不想要安装的环境了,可以使用下面的命令删除相应环境。
conda remove -n pytorch0 -–all # 删除 “pytorch0” 环境
其他安装
A. 指定版本 PyTorch 的安装
如果需要安装旧版本的 PyTorch(例如,使用他人基于旧版本的代码或硬件不支持高版本的CUDA驱动),可以在 PyTorch 官网中找到“install previous versions of PyTorch”,在里面找到符合自己需求版本的安装命令,以之替换安装步骤第4步中 c) 里的安装命令。
PyTorch官网中“install previous versions of PyTorch”的位置一般就在安装步骤的第3步中截图所在位置的上方数行中,如果实在找不到,可以在浏览器的界面中使用快捷键组合“Ctrl + F”,然后把 “install previous versions of PyTorch” 输入进弹出的页面搜索框,就可以快速找到。
B. 其他包的安装
按照上述方法建立环境并安装 torch 后,一般还需要根据自己的实际需要,安装其他的包。比如常用的 scipy 包、采用 Python 画类似 MATLAB 的图使用的 matplotlib 包等。这些包一般可以采用conda install命令安装。如果遇到不可以的,可以采用 pip install 命令安装。二者的主要区别就在于如果指定包的版本,需要使用“==”而非“=”。例如,安装1.11版本的 scipy 包和任意版本的 matplotlib 包可以采用
conda install scipy=1.11 matplotlib
或
pip install scipy==1.11 matplotlib
C. IDE 安装:PyCharm
注:如果习惯用 Anaconda 自带的 IDE(Integrated Development Environment,集成开发环境),如 Spyder 等,也可以不下载PyCharm。不过个人在多年前经过对比尝试后,出于便捷性的考虑,还是更倾向于使用 PyCharm。
去 PyCharm 官网,找到下载界面 3,根据自己的操作系统(Windows、macOS或Linux),找到PyCharm Community Edition(纯Python开发的IDE),点击下载,完成后安装。
如果觉得好用,请不要吝啬你的点赞哟~
这里写的是 Anaconda3 而非 Anaconda,原因是过去Anaconda曾经存在分别支持 Python 2 和 Python 3 的两种版本,其中,支持 Python 3 的版本称为 Anaconda 3。目前去 Anaconda 官网下载时,默认下载的就是 Anaconda3。 ↩︎
进入命令行的方法至少有:① 在电脑中搜索“命令提示符”或“Anaconda Prompt”,然后点击进入;② 使用键盘上的快捷键 “Win+R”,在弹出的窗口中输入“cmd”(即command【命令】的缩写),点击“Enter”(回车键)进入。 ↩︎
进入 PyCharm 官网后,不要直接下载软件。因为此时下载的是 PyCharm 的专业版(for专业开发者),只有30天的试用期,到期如不付费需要重新安装。找到下载界面的方法随时可能变化,需要自行尝试。目前的方法是进入PyCharm官网后,点击第二行菜单最后一项的“Download”,如下图所示.
↩︎