【仿真基本功】【PyTorch】从头安装PyTorch【2025/02/21更新】

PyTorch完整安装步骤

注:下面提到的所有官网,都可以通过在任意搜索网站(如百度)上搜索对应名称而直接找到。

v1.1, 于2024/02/21更新(新装电脑)
v1.0, 于2024/03/14更新(重装电脑)

1. 安装Anaconda

Anaconda官网,下载最新版本的Anaconda31。(注:PyTorch官网也推荐采用Anaconda进行包管理,因为Anaconda会安装所有的依赖库。)
【升级更新】
如果你电脑上已经安装了Anaconda的旧版本,可以打开Anaconda Navigator,直接在其中选择更新到最新版本。这样可以避免卸载再安装的麻烦。

2. 查看显卡对CUDA版本的支持

注:这里只考虑NVIDIA的显卡,其他显卡请自行查询相关信息。

进入命令行 2 ,输入

nvidia-smi

可以看到显卡支持的CUDA最高版本,如下图所示。
显卡能够支持的最高CUDA版本

如果支持的版本较低,可以尝试更新CUDA的最新版本。

2025更新:2025年02月20日时获取的最新NVIDIA GPU驱动版本为572.42,支持的CUDA版本为12.8,但实际上后续PyTorch支持的版本最高只到12.6。不过由于CUDA的版本向下兼容,所以使用12.8的版本没有问题。

3. 查看PyTorch的安装需求

PyTorch官网,查看PyTorch的安装需求。
目前(20230302)的安装需求是

  1. Python版本不低于Python 3.8。(在Python官网查询到目前Python目前的最新版本是3.12.2。【2025更新:目前最新版本为3.13.2,但不必执着于最新版本,建议采用3.12.9版本即可】)
  2. 稳定版本支持CUDA 12.1版本,小于等于显卡支持的CUDA最高版本12.4。因此,可以安装。【2025更新:目前建议用12.6版本】)
    3)如果只想安装CPU版本的PyTorch,可以把“Compute Platform”部分从“CUDA 12.1”换成“CPU”。

确认满足安装需求后,保留浏览器该界面,第4步中需要用到这里的安装命令。 当前PyTorch支持的CUDA版本及安装命令

2025更新:2025年02月21日时,PyTorch官网已经不再可以使用Conda进行安装,选择Conda时会在“Run this Command”一栏提示“NOTE: Conda packages are no longer available. Please use pip instead.” 因此,需要改用Pip进行安装,即把上图中“Package”一栏的Conda改选为Pip即可。此时“PyTorch Build”的最新版为Stable 2.6.0,“Compute Platform”的最新版为CUDA 12.6,选择后,"Run this Command”一栏会出现指令

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

4. 安装 PyTorch

a) 配置新环境

建立 “pytorch0” 环境,要求 python 版本为目前最新的3.12.2(也可以自行选择其他符合要求的python版本)。其中的 “pytorch0” 也可以自由换为其他名称,符合命名要求即可。

conda create -n pytorch0 python=3.12.2

b) 进入新环境

conda activate pytorch0  # 进入 pytorch0 环境

c) 按照 CUDA 版本要求,必须小于等于显卡支持的 CUDA 最高版本。

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

(复制自 PyTorch 官网,见本文第二张图片。)【下面一行是2025更新后的命令】

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

这里解释一下上面的这段命令。conda install 是conda包管理器的安装命令,用于安装指定的一个或多个软件包,并且可以指定软件包的版本和安装渠道。该基本命令的形式如下:

conda install 包名1[[=版本1] 包名2[=版本2]] ... [-c 频道1 [-c 频道2]] ...

其中,包名部分与频道部分的顺序没有要求,各包彼此之间、各频道彼此之间也没有顺序要求。但是,所有包名必须在一起,所有频道必须在一起,否则会报错。
因此,上面那段命令的含义是:使用 conda 包管理器安装(conda install)支持 CUDA 12.1 的 PyTorch 深度学习框架及其相关扩展库 torchvision 和 torchaudio(pytorch torchvision torchaudio pytorch-cuda=12.1),从 PyTorch 和 NVIDIA 官方频道(-c pytorch -c nvidia)获取软件包。

d) 安装完成后,输入【python】,进入 python 控制台,然后输入

import torch
torch.__version__

如果没有报错且能够正常输出当前的 pytorch 版本,那么安装就顺利完成了。

e) 删除环境及其中所有安装的所有包

如果不想要安装的环境了,可以使用下面的命令删除相应环境。

conda remove -n pytorch0 -–all  # 删除 “pytorch0” 环境

其他安装

A. 指定版本 PyTorch 的安装

如果需要安装旧版本的 PyTorch(例如,使用他人基于旧版本的代码或硬件不支持高版本的CUDA驱动),可以在 PyTorch 官网中找到“install previous versions of PyTorch”,在里面找到符合自己需求版本的安装命令,以之替换安装步骤第4步中 c) 里的安装命令。

PyTorch官网中“install previous versions of PyTorch”的位置一般就在安装步骤的第3步中截图所在位置的上方数行中,如果实在找不到,可以在浏览器的界面中使用快捷键组合“Ctrl + F”,然后把 “install previous versions of PyTorch” 输入进弹出的页面搜索框,就可以快速找到。

B. 其他包的安装

按照上述方法建立环境并安装 torch 后,一般还需要根据自己的实际需要,安装其他的包。比如常用的 scipy 包、采用 Python 画类似 MATLAB 的图使用的 matplotlib 包等。这些包一般可以采用conda install命令安装。如果遇到不可以的,可以采用 pip install 命令安装。二者的主要区别就在于如果指定包的版本,需要使用“==”而非“=”。例如,安装1.11版本的 scipy 包和任意版本的 matplotlib 包可以采用

conda install scipy=1.11 matplotlib

pip install scipy==1.11 matplotlib

C. IDE 安装:PyCharm

注:如果习惯用 Anaconda 自带的 IDE(Integrated Development Environment,集成开发环境),如 Spyder 等,也可以不下载PyCharm。不过个人在多年前经过对比尝试后,出于便捷性的考虑,还是更倾向于使用 PyCharm。

去 PyCharm 官网,找到下载界面 3,根据自己的操作系统(Windows、macOS或Linux),找到PyCharm Community Edition(纯Python开发的IDE),点击下载,完成后安装。

如果觉得好用,请不要吝啬你的点赞哟~


  1. 这里写的是 Anaconda3 而非 Anaconda,原因是过去Anaconda曾经存在分别支持 Python 2 和 Python 3 的两种版本,其中,支持 Python 3 的版本称为 Anaconda 3。目前去 Anaconda 官网下载时,默认下载的就是 Anaconda3。 ↩︎

  2. 进入命令行的方法至少有:① 在电脑中搜索“命令提示符”或“Anaconda Prompt”,然后点击进入;② 使用键盘上的快捷键 “Win+R”,在弹出的窗口中输入“cmd”(即command【命令】的缩写),点击“Enter”(回车键)进入。 ↩︎

  3. 进入 PyCharm 官网后,不要直接下载软件。因为此时下载的是 PyCharm 的专业版(for专业开发者),只有30天的试用期,到期如不付费需要重新安装。找到下载界面的方法随时可能变化,需要自行尝试。目前的方法是进入PyCharm官网后,点击第二行菜单最后一项的“Download”,如下图所示.
    进入PyCharm官网后,不要直接下载软件 ↩︎

### PyTorch GPU 安装教程 2025年版本 #### 准备工作 确保计算机已安装适合的 NVIDIA 显卡驱动程序并确认其正常运行。对于30系列显卡,支持 CUDA 版本需为11.1以上[^1]。 #### 查看Python版本 在命令提示符或终端输入 `python --version` 或者 `python3 --version` 来获取当前系统的 Python 版本号。这一步骤是为了匹配合适的 PyTorchCUDA 组合包。例如,`cp312` 表明对应的是 Python 3.12 的版本。 #### 获取PyTorch安装指令 访问官方 PyTorch 网站,在页面上选择适用于 Windows 平台、所需 Python 版本以及相应的 CUDA 版本(如 cu124 对应于 CUDA 12.4)。点击生成的 pip 命令可以直接用于后续安装过程。 #### 执行安装操作 打开命令行工具执行之前获得的 pip 安装语句。如果是首次安装,则直接运行该命令即可完成整个流程;若要更新现有版本到最新稳定版,建议先卸载旧版本再重新安装新版本。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124 ``` #### 验证安装成功与否 启动一个新的 Python 解释器会话,并尝试导入 `torch` 库来测试是否能够正常使用 GPU 加速功能: ```python import torch print(torch.__version__) print(f"CUDA Available: {torch.cuda.is_available()}") print(f"Number of GPUs: {torch.cuda.device_count()}") ``` 上述代码片段将会打印出 PyTorch 的版本信息、CUDA 是否可用状态及连接了多少张 GPU 设备的信息[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值