PyTorch安装教程
一、本地安装
1.CUDA的下载与安装
CUDA是Nvidia开发的一种并行计算平台和编程模型,用于在其自己的GPU(图形处理单元)上进行常规计算。 CUDA使开发人员能够利用GPU的能力来实现计算的可并行化部分,从而加快计算密集型应用程序的速度。
1)查看GPU版本
方法1:
打开Terminal(CMD),输入指令
nvidia-smi
即可得到如下内容,此时便可显示出当前驱动所支持的最高版本CUDA;
方法2:
打开nvidia控制面板,点击菜单栏帮助,选择系统信息,即可查看驱动版本和支持的CUDA版本;
驱动版本与Cuda对应关系:
2)版本选择
点击CUDA Toolkit 12.4 Update 1 Downloads | NVIDIA Developer,选择对应版本(高版本Cuda兼容低版本)
点击https://developer.nvidia.com/cuda-toolkit-archive可下载更多历史版本
(基于下载速度可能较慢,此处提供Cuda12.4第三方网盘链接)
3)安装
下载完成后,打开安装程序,一路默认安装即可,
选择自定义,
此处只选择CUDA即可,
默认情况下在环境变量(Win11系统打开设置,选择系统–>系统信息,再点击高级系统设置即可找到环境变量)中会自动生成如下路径,没有的话需自己补充,
在Path中也会生成如下路径,
4)验证安装
方法1:
在Terminal(CMD)中输入,
nvcc -V
显示如下内容即代表安装成功,
方法2:
打开Cuda根目录中的extras,点击其下的demo——suite,
按住Lshift,点击鼠标右键,在此处打开CMD,分别将bandwidthTest和deviceQuery拖入其中,显示如下内容即代表安装成功,
2.cudnn的下载与安装
cudnn(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。
1)找到对应版本并下载
点击[cuDNN 9.1.1 Downloads | NVIDIA Developer](https://developer.nvidia.com/cuda-downloads)进入下载界面,下载如下版本(CUDA12.X下载该版本即可),
点击cuDNN Archive | NVIDIA Developer可选择更多历史版本,其后便有对应关系,
2)安装
因为下载的文件为exe格式文件,故而直接安装即可。如果下载的是历史版本的zip文件,则需找到CUDA的安装文件夹,将zip文件夹内的相应文件拷贝到 CUDA根目录进行替换。
打开安装程序,一路进行默认默认安装即可,
3)验证安装(此步需全部安装完毕后进行)
cudnn的验证,原理是在pytorch中运行cudnn的示例程序,因此需确保已成功安装pytorch。
在配置完毕的环境中运行如下代码,
import torch
print(torch.backends.cudnn.version())
from torch.backends import cudnn
print(cudnn.is_available())
a=torch.tensor(1.)
print(cudnn.is_acceptable(a.cuda()))
得到如下输出结果则安装成功,
3.PyTorch及相关组件的下载与安装
- Torch 是 PyTorch 的核心库,它提供了张量(tensor)操作和计算图构建的功能。张量是 PyTorch 中用于存储和操作数据的主要数据结构。Torch 提供了自动求导(Autograd)功能,使得用户可以轻松地构建和训练神经网络模型;
- Torchvision 是 PyTorch 的一个独立子库,主要用于计算机视觉任务,包括图像处理、数据加载、数据增强、预训练模型等。Torchvision 提供了各种经典的计算机视觉数据集的加载器,如CIFAR-10、ImageNet,以及用于数据预处理和数据增强的工具,可以帮助用户更轻松地进行图像分类、目标检测、图像分割等任务;
- Torchaudio 也是 PyTorch 的一个独立子库,用于处理音频信号和音频数据。它提供了加载、处理和转换音频数据的工具,以及用于构建声音处理模型的函数。
1)下载
鉴于国内网络下,通过官方途径及更换镜像源方式下载速度均不太理想,因而此处不再对该两种方法进行赘述,只给出速度较为理想的下载方式。
点击download.pytorch.org/whl/torch_stable.html进入PyTorch镜像站,下载对应版本,
基于python3.11与此前安装的Cuda12.4,找到如下版本,
TIP:命名意义:
-
第一部分代表Cuda版本,上例即为Cuda12.1,因为Cuda高版本可兼容低版本,故Cuda版本>=12.1的均可安装该版本。此处为cpu则表示为基于cpu的版本;
-
第二部分代表库版本,torch、torchaudio、torchvision的对应关系如下,每个小版本也需对应(如上面选择的版本);
-
第三部分代表对应的python版本;
-
第四部分代表基于的操作系统;
2)安装
下载完文件后在文件所在文件夹按住Lshift,同时点击鼠标右键在此处打开Terminal(CMD),分别输入如下指令,
pip install torch-2.2.2+cu121-cp311-cp311-win_amd64.whl
pip install torchaudio-2.2.2+cu121-cp311-cp311-win_amd64.whl
torchvision-0.17.2+cu121-cp311-cp311-win_amd64.whl
分别显示如下结果,
在Terminal(CMD)中输入
pip list
可找到对应包,
3)验证安装
运行如下代码,
import torch
print(torch.__version__)
print(torch.cuda.is_available())
输出如下内容即代表安装成功,
TIP:
首次安装时需下载以下两文件,并需首先安装。由此可有效降低安装时间,
2025:基于123云盘电脑端每天免费额度仅1GB,可通过123云盘脚本配合油猴(Tampermonkey)进行使用。