PyTorch安装教程

PyTorch安装教程

一、本地安装

1.CUDA的下载与安装

CUDA是Nvidia开发的一种并行计算平台和编程模型,用于在其自己的GPU(图形处理单元)上进行常规计算。 CUDA使开发人员能够利用GPU的能力来实现计算的可并行化部分,从而加快计算密集型应用程序的速度。

1)查看GPU版本
方法1:

打开Terminal(CMD),输入指令

nvidia-smi

即可得到如下内容,此时便可显示出当前驱动所支持的最高版本CUDA;

在这里插入图片描述

方法2:

打开nvidia控制面板,点击菜单栏帮助,选择系统信息,即可查看驱动版本和支持的CUDA版本;

在这里插入图片描述

在这里插入图片描述

驱动版本与Cuda对应关系:

在这里插入图片描述

2)版本选择

点击CUDA Toolkit 12.4 Update 1 Downloads | NVIDIA Developer,选择对应版本(高版本Cuda兼容低版本)

点击https://developer.nvidia.com/cuda-toolkit-archive可下载更多历史版本

(基于下载速度可能较慢,此处提供Cuda12.4第三方网盘链接

在这里插入图片描述

3)安装

下载完成后,打开安装程序,一路默认安装即可,

选择自定义,

在这里插入图片描述

此处只选择CUDA即可,

在这里插入图片描述

默认情况下在环境变量(Win11系统打开设置,选择系统–>系统信息,再点击高级系统设置即可找到环境变量)中会自动生成如下路径,没有的话需自己补充,

在这里插入图片描述

在这里插入图片描述

在Path中也会生成如下路径,

在这里插入图片描述

4)验证安装
方法1:

在Terminal(CMD)中输入,

nvcc -V

显示如下内容即代表安装成功,

在这里插入图片描述

方法2:

打开Cuda根目录中的extras,点击其下的demo——suite,

在这里插入图片描述

按住Lshift,点击鼠标右键,在此处打开CMD,分别将bandwidthTest和deviceQuery拖入其中,显示如下内容即代表安装成功,

在这里插入图片描述

在这里插入图片描述

2.cudnn的下载与安装

cudnn(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。

1)找到对应版本并下载

点击[cuDNN 9.1.1 Downloads | NVIDIA Developer](https://developer.nvidia.com/cuda-downloads)进入下载界面,下载如下版本(CUDA12.X下载该版本即可),

Cudnn9.1.1第三方网盘下载链接

在这里插入图片描述

点击cuDNN Archive | NVIDIA Developer可选择更多历史版本,其后便有对应关系,

在这里插入图片描述

2)安装

因为下载的文件为exe格式文件,故而直接安装即可。如果下载的是历史版本的zip文件,则需找到CUDA的安装文件夹,将zip文件夹内的相应文件拷贝到 CUDA根目录进行替换。

打开安装程序,一路进行默认默认安装即可,

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3)验证安装(此步需全部安装完毕后进行)

cudnn的验证,原理是在pytorch中运行cudnn的示例程序,因此需确保已成功安装pytorch。

在配置完毕的环境中运行如下代码,

import torch
print(torch.backends.cudnn.version())

from torch.backends import cudnn  
print(cudnn.is_available())

a=torch.tensor(1.)
print(cudnn.is_acceptable(a.cuda()))

得到如下输出结果则安装成功,

在这里插入图片描述

3.PyTorch及相关组件的下载与安装

  • Torch 是 PyTorch 的核心库,它提供了张量(tensor)操作和计算图构建的功能。张量是 PyTorch 中用于存储和操作数据的主要数据结构。Torch 提供了自动求导(Autograd)功能,使得用户可以轻松地构建和训练神经网络模型;
  • Torchvision 是 PyTorch 的一个独立子库,主要用于计算机视觉任务,包括图像处理、数据加载、数据增强、预训练模型等。Torchvision 提供了各种经典的计算机视觉数据集的加载器,如CIFAR-10、ImageNet,以及用于数据预处理和数据增强的工具,可以帮助用户更轻松地进行图像分类、目标检测、图像分割等任务;
  • Torchaudio 也是 PyTorch 的一个独立子库,用于处理音频信号和音频数据。它提供了加载、处理和转换音频数据的工具,以及用于构建声音处理模型的函数。
1)下载

鉴于国内网络下,通过官方途径及更换镜像源方式下载速度均不太理想,因而此处不再对该两种方法进行赘述,只给出速度较为理想的下载方式。

点击download.pytorch.org/whl/torch_stable.html进入PyTorch镜像站,下载对应版本,

在这里插入图片描述

基于python3.11与此前安装的Cuda12.4,找到如下版本,

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

TIP:命名意义:

在这里插入图片描述

  • 第一部分代表Cuda版本,上例即为Cuda12.1,因为Cuda高版本可兼容低版本,故Cuda版本>=12.1的均可安装该版本。此处为cpu则表示为基于cpu的版本;

  • 第二部分代表库版本,torch、torchaudio、torchvision的对应关系如下,每个小版本也需对应(如上面选择的版本);

    在这里插入图片描述
    在这里插入图片描述

  • 第三部分代表对应的python版本;

  • 第四部分代表基于的操作系统;

相关文件第三方下载链接

2)安装

下载完文件后在文件所在文件夹按住Lshift,同时点击鼠标右键在此处打开Terminal(CMD),分别输入如下指令,

pip install torch-2.2.2+cu121-cp311-cp311-win_amd64.whl
pip install torchaudio-2.2.2+cu121-cp311-cp311-win_amd64.whl
torchvision-0.17.2+cu121-cp311-cp311-win_amd64.whl

分别显示如下结果,

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在Terminal(CMD)中输入

pip list

可找到对应包,

在这里插入图片描述

3)验证安装

运行如下代码,

import torch
print(torch.__version__)
print(torch.cuda.is_available())

输出如下内容即代表安装成功,

在这里插入图片描述

TIP:
首次安装时需下载以下两文件,并需首先安装。由此可有效降低安装时间,

在这里插入图片描述
在这里插入图片描述
2025:基于123云盘电脑端每天免费额度仅1GB,可通过123云盘脚本配合油猴(Tampermonkey)进行使用。

如果你想在本地安装PyTorch,以下是一些常用的安装方法。首先,你可以使用pip命令来安装特定版本的PyTorch和torchvision。例如,你可以使用以下命令来安装PyTorch 1.10.0和torchvision 0.11.0: ``` pip install torch==1.10.0 cu111 torchvision==0.11.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 这个命令将会从PyTorch官方网站下载对应版本的PyTorch和torchvision,并进行安装。请确保你的环境支持CUDA 11.1(cu111)。 另外,如果你已经下载了PyTorch和torchvision的whl文件,你可以使用以下命令来进行本地安装: ``` pip install "torch-1.8.0 cpu-cp38-cp38-win_amd64.whl" pip install "torchvision-0.9.0 cpu-cp38-cp38-win_amd64.whl" ``` 这两行命令分别安装PyTorch和torchvision的指定版本。请确保你下载的whl文件和你的操作系统、Python版本以及CUDA版本相匹配。 不过,我也建议你在安装之前,先去PyTorch官方网站查询适合你CUDA版本的PyTorch和torchvision版本。根据官网的描述,对于CUDA 11.0版本和Windows系统,推荐安装PyTorch版本为1.7.0,torchvision版本为0.8.0。 希望这些信息能帮助到你,祝你成功安装PyTorch!<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [PyTorch【1】PyTorch安装](https://blog.csdn.net/m0_63462829/article/details/127018664)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Win10本地安装深度学习框架Pytorch(CPU版),超简单只需三步!!!](https://blog.csdn.net/qq_51983316/article/details/128038963)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [本地安装pytorch-超级详细](https://blog.csdn.net/qq_45649076/article/details/120271445)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨澜婵湮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值