机器学习基础:决策树

目录

1. Zero-R

2. One-R

3. 从1-R到决策树

4. ID-3决策树

5. 决策树的分支条件——不纯度

6. 决策树的特征选择——信息增益

6.1 信息增益的缺陷

7. 决策树的特征选择——信息增益比

8. 决策树对于样本的预测

8.1 对于重复样本的预测

8.2 对于新样本的预测

9. 决策树的深度 & 性能

10. 关于ID-3决策树的讨论


1. Zero-R

0-R是一种常用的baseline

是通过对样本集合进行统计,然后选用出现频率最高的样本类作为对所有测试集样本预测的结果。


例如一个数据集包含三类样本,标签分别是:

A 1000
B 500
C 500

那么这个时候最多类是A,占比是50% ,因此对于任何测试样本,这个0-R模型的预测结果都是 A,而这个模型的正确率也就是50%


0-R模型不涉及任何特征的使用:

只有majority\: \: class对于预测样本类别有用。

2. One-R

1-R

只使用一组特征来构建模型并预测标签。

实际流程

对于每个特征:

  • 针对每个特征中所有不同的取值,计算这个取值的弱势标签数m
  • 将所有取值的弱势标签数求和,除以所有的样本数n,得到\frac{m}{n}以这个特征构建0-R时候的错误概率

比对每个特征的结果并选出拥有最高分类概率的特征作为标准,在测试集中进行样本预测。


例子:

outlook这个特征进行构建1-R 模型:

sunny中对于noyes的数量分别是2,3;所以对于sunny来说,把no标签看做是优势标签,而 yes标签被认为是弱势标签,因此sunny的弱势样本数是2个。

同理,outlook中的overcast的弱势样本数是no0个;rainy的弱势样本是no2个。所以整个 outlook特征对于标签的错误率是\frac{4}{14}

再计算Temp特征对于标签的错误率是\frac{2+2+1}{14}=\frac{5}{14}

综上:Outlook规则的表现优于Temp。我们选Outlook作为1-R的特征。


再来看一个有更多特征的例子:

根据上面的结果,我们的1-R模型会基于outlook或者humidity来构建。

我们把

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值