- 博客(62)
- 收藏
- 关注
原创 深度学习GPU选购指南
有了8位输入,它允许你以两倍的速度加载矩阵乘法的数据,你可以在缓存中存储两倍的矩阵元素,而在Ada和Hopper架构中,缓存是非常大的,现在有了FP8张量核心,你可以为RTX 4090获得0.66 PFLOPS的计算量。对我的工作的一个批评是:"你减少了网络所需的FLOPS,但并没有产生速度的提升,因为GPU不能进行快速的稀疏矩阵乘法"。不过总的来说,这些新的数据类型可以被看作是懒惰的数据类型,因为你可以通过一些额外的编程努力(适当的损失缩放、初始化、规范化、使用Apex)来获得旧数据类型的所有好处。
2023-04-26 14:23:15 1654 1
原创 读 AI学者生存策略
没有计算资源 ,没有标注的人力,很难做出突破性的研究。如作者最后所说的,(1) 分享一些想法给community,(2)提供一些guidelines ,讨论 学术届 与 工业界的AI赛道差异 (3)引发一些公开的讨论。目前的 grants 也是喜欢 safe and incremental research on popular topics,但这也限制了 很难与工业界的lab 竞争。(读者按:我知道早期2017,2018确实是,需要一点技术,但近期我也不确定有没有好一些。但和大公司相比肯定还是少很多的。
2023-04-22 12:09:52 738
原创 【经验帖】深度学习如何训练出好的模型
深度学习在近年来得到了广泛的应用,从图像识别、语音识别到自然语言处理等领域都有了卓越的表现。但是,要训练出一个高效准确的深度学习模型并不容易。不仅需要有高质量的数据、合适的模型和足够的计算资源,还需要根据任务和数据的特点进行合理的超参数调整、数据增强和模型微调。在本文中,我们将会详细介绍深度学习模型的训练流程,探讨超参数设置、数据增强技巧以及模型微调等方面的问题,帮助读者更好地训练出高效准确的深度学习模型。
2023-04-22 12:07:28 1291
原创 深度学习pytorch训练代码模板(个人习惯)
目录如下:导入包以及设置随机种子以类的方式定义超参数定义自己的模型定义早停类(此步骤可以省略)定义自己的数据集Dataset,DataLoader实例化模型,设置loss,优化器等开始训练以及调整lr绘图预测import numpy as npimport torchimport torch.nn as nnimport numpy as npimport pandas as pdfrom torch.utils.data import DataLoader, Datasetfrom s
2023-04-22 12:04:39 847
原创 神经网络初学者的激活函数指南
如果你刚刚开始学习神经网络,激活函数的原理一开始可能很难理解。但是如果你想开发强大的神经网络,理解它们是很重要的。但在我们深入研究激活函数之前,先快速回顾一下神经网络架构的基本元素。如果你已经熟悉神经网络的工作原理,可以直接跳到下一节。
2023-04-22 12:03:40 564
原创 在金融领域使用机器学习的 9个技巧
机器学习已经倍证明可以预测结果和发掘隐藏的数据模式。但是必须小心使用,并遵循一些规则,否则就会在数据的荒野中徘徊而无所获。使用机器学习进行交易的道路充满了陷阱和挑战,只有那些勤奋认真地遵循规则的人才能从中获得收益。下面是一些技巧可以帮助你更好的使用机器学习进行交易。
2023-04-22 12:02:17 692
原创 27 个Python数据科学库实战案例 (附代码)
的前身是 Torch,其底层和 Torch 框架一样,但是使用 Python 重新写了很多内容,不仅更加灵活,支持动态图,而且提供了 Python 接口。为了大家能够对人工智能常用的 Python 库有一个初步的了解,以选择能够满足自己需求的库进行学习,对目前较为常见的人工智能库进行简要全面的介绍。简单的说,要描述输入的 feature,输入的 label,一些参数,参数和输入之间的计算关系,以及目标节点是什么。它的目标是为机器学习任务和各种预定义的环境提供灵活、易于使用且强大的算法来测试和比较算法。
2023-04-17 11:05:29 442
原创 人工智能全球发展趋势、经济影响和未来挑战
在过去几年中,全球范围内对人工智能的投资和研究持续增长,这使得人工智能成为了各行各业的关注焦点。此外,文章还将讨论人工智能对全球经济和就业市场的影响,并探讨人工智能未来发展的趋势和挑战。随着人工智能技术的不断进步,全球范围内对人工智能的投资和研究也在迅速增长。据统计,2019年,全球AI企业共获得了140亿美元的投资,其中美国和中国分别占据了43%和26%的市场份额。美国政府也在积极推动人工智能技术的发展,其中包括成立了国家人工智能研究和发展委员会,并拨款100亿美元用于支持人工智能的研究和开发。
2023-04-17 10:53:55 1411
原创 计算机视觉的热门研究方向与发展趋势
小时候看书,说我们人类面临三个世界,一个是虚拟的意识世界,另一个是现实的物理世界,第三个是真理世界,也就是数学世界。当然,我们可以比较客观地说,计算机视觉是让计算机去创造一种新的物种,像人一样具有可辨识、可观察的能力。所以我认为,在学术界的毕业生需要有一种哲学的思辨能力,而并不仅仅是做一种技术的应用,也并不仅仅是提高一些效率。在学术界,你的论文发表了之后,研究就结束了。但在工业界是不一样的,论文发表可能意味这个工作才刚刚开始,后面还有很长的路要走,还要把技术经过一些改进,使它能够成熟到去支持业务的落地。
2023-04-16 09:48:38 3705
原创 黑盒预测模型有哪些问题?可解释模型有哪些重要意义?
这种不安全性体现在两个层面:其一,从建模人员角度来说,由于是"黑盒模型",结构连他自己都搞不明白,当模型受到外界攻击时,会导致应用奔溃,甚至出现重大问题;其二,从应用者角度来说,拿到一个完全看不见、摸不着的"黑盒模型",属实心里没底,尤其是模型的风险点到底在哪?"黑盒模型"固然有其好处,即预测性能高,但缺点很明显,那就是可解释很差。今天,和大家谈谈两个问题,分别是"黑盒模型的危害"以及"可解释模型的意义"。这也是可解释性的基础工作,且其识别重要因素的手段众多,有全局的,也有局部的。
2023-03-23 09:20:44 985
原创 ChatGPT数据集之谜
来源丨网络作者丨Alan D. Thompson半个月以来,ChatGPT这把火越烧越旺。国内很多大厂相继声称要做中文版ChatGPT,还公布了上线时间表,不少科技圈已功成名就的大佬也按捺不住,携巨资下场,要创建“中国版OpenAI“。不过,看看过去半个月在群众眼里稍显窘迫的Meta的Galactica,以及Google紧急发布的Bard,就知道在短期内打造一个比肩甚至超越ChatGPT效果的模型没那么简单。让很多人不免感到诧异的是,ChatGPT的核心算法Transformer最初是由Google提出的,
2023-03-22 15:35:18 2651
原创 让PyTorch训练速度更快,你需要掌握这17种方法
与传统的学习率 schedule 相比,在最好的情况下,该 schedule 实现了巨大的加速(Smith 称之为超级收敛)。然后,这个周期的长度应该略小于总的 epochs 数,并且,在训练的最后阶段,我们应该允许学习率比最小值小几个数量级。一个比较好用的经验是,batch 大小加倍时,学习率也要加倍。当使用 torch.utils.data.DataLoader 时,设置 num_workers > 0,而不是默认值 0,同时设置 pin_memory=True,而不是默认值 False。
2023-03-22 10:26:04 2352 1
原创 21个深度学习开源数据集分类汇总
GENKI-R2009a包含11159个图像,GENKI-4K包含4000个图像,分为“笑”和“不笑”两种,每个图片的人脸的尺度大小,姿势,光照变化,头的转动等都不一样,专门用于做笑脸识别。GENKI-SZSL包含3500个图像,这些图像包括广泛的背景,光照条件,地理位置,个人身份和种族等。UCF50 是一个由中佛罗里达大学发布的动作识别数据集,由来自 youtube 的真实视频组成,包含 50 个动作类别,如棒球投球、篮球投篮、卧推、骑自行车、骑自行车、台球、蛙泳、挺举、跳水、击鼓等。
2023-03-22 10:14:38 1976
原创 常见机器学习可解释性Python框架!
它提供全方位可解释的人工智能和可解释的机器学习能力来解决实践中机器学习模型在产生中需要判断的几个问题。对于需要在ML过程的各个阶段解释各种类型的数据、模型和解释技术的数据科学家、ML研究人员,OmniXAI希望提供一个一站式的综合库,使可解释的AI变得简单。InterpretML展示了两种类型的可解释性:glassbox模型——为可解释性设计的机器学习模型(如:线性模型、规则列表、广义可加模型)和黑箱可解释性技术——用于解释现有系统(如:部分依赖,LIME)。在可解释性领域,最早出名的方法之一是LIME。
2023-03-21 07:46:52 396
原创 数据别愁!机器学习、深度学习数据集汇总
Kaggle 数据集:Find Open Datasets and Machine Learning Projects | Kaggle爱竞赛的盆友们应该很熟悉了,Kaggle上有各种有趣的数据集,拉面评级、篮球数据、甚至西雅图的宠物许可证。牛津的机器人汽车:这个数据集来自牛津的机器人汽车,它于一年时间内在英国牛津的同一条路上,反反复复跑了超过100次,捕捉了天气、交通和行人的不同组合,以及建筑和道路工程等长期变化。UCI机器学习库:最古老的数据集源之一,是寻找有趣数据集的第一站。
2023-03-17 11:05:22 647
原创 OpenAI发布GPT-4,有哪些技术趋势值得关注?
GPT 4.0去年8月就做好了,估计现在GPT 5.0正在炼丹过程中,这么长的时间窗口,结果Google都能落到目前这个局面,想想Transformer、CoT等非常关键的一些研究都是自己做出来的,竟沦落至此,不知一众高层作何感想。,也代表了一个技术方向。所谓Self Instruct,就是采取一定技术手段,不用人工标注Instruct,而是从OpenAI的接口里,好听点叫“蒸馏”出Instruct,也就是不用人标注,而是ChatGPT作为teacher,给你的Instruct打上标注结果。
2023-03-17 10:55:41 585
原创 Stable Diffusion的入门介绍和使用教程
使用这个模型,可以生成包括人脸在内的任何图像,因为有开源的预训练模型,所以我们也可以在自己的机器上运行它,如下图所示。看完本文希望你已经知道了如何使用Stable Diffusion以及它具体工作的原理,如果你对他的处理流程还有疑问,可以通过自定义处理管道来深入的了解他的工作流程,希望本文对你有所帮助。增加的比例越多,图像的质量就会越高,但是你得到的输出就会越少。然后使用潜在空间的种子生成大小为64×64的随机潜在图像表示,通过CLIP的文本编码器将输入的文本提示转换为大小为77×768的文本嵌入。
2023-03-16 20:06:37 4254
原创 数据挖掘、机器学习、深度学习的区别
数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。机器学习的概念就是通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。
2023-03-14 11:21:23 776
原创 计算机视觉面试中一些热门话题整理
Google团队提出的将Transformer应用在图像分类的模型,虽然不是第一篇将transformer应用在视觉任务的论文,但是因为其模型“简单”且效果好,可扩展性强(scalable,模型越大效果越好),成为了transformer在CV领域应用的里程碑著作,也引爆了后续相关研究,目前来说VIT已经做为目标检测和分割的骨干模型。当我们有一个小数据集时,它是非常有用的,但通常来说,它是一个很好的做法,因为我们希望我们的模型更准确。并且它的大小更小(由于使用全局平均池化,而不是完全连接的层)。
2023-03-13 17:54:15 407
原创 计算机视觉CV - 技术学习路线图
AI - Interview]IEEE Spectrum专访吴恩达(一)小就是新的大Small is the New Big。[AI - Interview]IEEE Spectrum专访吴恩达(二)小就是新的大Small is the New Big。[AI - Interview]IEEE Spectrum专访吴恩达(三)小就是新的大Small is the New Big。1 图像分类(Image Classification)3 图像分割(Image Segmentation)
2023-03-13 17:52:50 460
原创 358 篇论文, 最新知识图谱KG综述!
针对知识图谱补全,本节将介绍补全知识图谱的方法、各种场景中进行知识推理的方法、可解释的知识推理模型。在该过程完成后,对于粗加工的知识图谱进行知识精炼,其主要包括知识补全与知识融合两个过程。针对精炼后的知识图谱,成熟的知识图谱系统将对其已有的结构化数据进行知识演化分析,其主要包括:时序知识图谱与条件知识图谱的构建与完善。因此,不同于已有调研,本文根据知识图谱构建不同阶段与大数据环境HACE特征的不同层面深入阐述近年来知识图谱构建方法模型的特点与范式,然后从具有前景的模型设计理念出发,展望未来的挑战和方向。
2023-03-12 10:49:20 546
原创 强推!30个遥感数据下载网站整理分享
账号注册,直接下载即可。INPE是由中国与巴西合作支持,主要数据源自中巴合作项目,两颗资源卫星CBERS-2和CBERS-2b,也收录了CBERS、Landsat,、ResourceSat、S-NPP、Terra & UK-DMC 2等项目的数据,但所包含数据仅局限在南美以及非洲地区。数据资源更新比较稳定,免费数据包括Landsat系列、中巴资源卫星、MODIS数据的各种产品、DEM数字高程数据、EO-1数据、NOAAA VHRR数据产品、Sentinel数据等。数据下载很慢,经常会断,建议采用迅雷下载。
2023-03-11 14:45:58 13023
原创 一文梳理深度学习算法演进
都取得了不错的效果。LAS的工作是Google Brain的实习生William15年在上一代框架DistBelif上完成的,在当时相比传统方案是个不小的进步,它让语音识别从一个多阶段的算法和系统工程,变成了端到端几百行python代码的问题。勤劳的算法人员在早期LR,FM,FFM等阶段,更多采用了人工实验的方式挑选了特征,但是我们也逐渐看到隐式、自动化交叉取得了更好的效果。
2023-03-10 18:48:57 1024
原创 梯度提升算法决策过程的逐步可视化
这就是梯度提升,我们不是使用损失函数相对于当前学习器的真实梯度g_m来更新当前学习器F_{m},而是使用弱回归树h_m来更新它。因为我们不能为每个x计算y,所以不知道这个梯度的确切值,但是对于训练数据中的每一个x_i,梯度完全等于步骤m的残差:r_i!训练新的分类器:用这些负梯度作为目标变量,训练一个新的弱分类器。下图可以看到,该数据集是可以明显的区分出分类的边界的,但是因为他是非线性的,所以使用线性算法进行分类时会遇到很大的困难。计算损失函数的负梯度:计算出每个样本点在当前模型下的损失函数的负梯度。
2023-03-07 16:58:13 445
原创 2023 最新计算机视觉学习路线(入门篇)
一个是速度,因为它是一种解释型语言,因此执行时间往往比编译语言(如 C++ 或 Java)慢,这可能会影响大型项目的性能,其中需要在实时场景中快速处理大量数据点,例如机器人控制系统,在这种情况下,每毫秒对系统自身实现的总体精度水平都有影响。例如,如果你正在制造一辆自动驾驶汽车,那么你就需要计算机视觉技术,以便自动检测障碍物并采取适当的行动,比如在需要时减速或停止。同样,如果你希望家中或办公室的安全系统自动化,那么计算机视觉也会派上用场,它可以识别有进入权限的人的脸,而拒绝那些没有权限的人进入。
2023-03-07 16:52:39 2269
原创 机器学习模型的可解释性算法汇总!
目前很多机器学习模型可以做出非常好的预测,但是它们并不能很好地解释他们是如何进行预测的,很多数据科学家都很难知晓为什么该算法会得到这样的预测结果。这是非常致命的,因为如果我们无法知道某个算法是如何进行预测,那么我们将很难将其前一道其它的问题中,很难进行算法的debug。如上图所示,特征f2在特征的最上面,对模型的误差影响是最大的,f1在shuffle之后对模型却几乎没什么影响,生息的特征则对于模型是负面的贡献。本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术,包括它们的相对优点和缺点。
2023-03-05 14:07:09 636
原创 不平衡数据集的建模的技巧和策略
但是非欺诈类的观测值的数量高于欺诈类的观测值的数量,这拉搞了我们对准确率的计算,并且我们更加关注的是欺诈类的准确率,所以我们需要一个指标来衡量它的性能。处理不平衡的数据集是具有挑战性的,但通过遵循本文讨论的技巧和策略,可以建立有效的模型准确预测少数群体。因此,试验不同的技术并使用适当的指标评估它们的性能是很重要的。在收集更多数据、生成合成样本、使用领域知识专注于重要样本以及使用异常检测等先进技术是一些可用于提高模型在不平衡数据集上的性能的策略。通过这些技巧,可以为不平衡的数据集构建有效的模型。
2023-03-05 14:03:42 643
原创 YOLOv8训练自己的数据集(超详细)
接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)至此,自定义数据集已创建完毕,接下来就是训练模型了。
2023-03-05 13:52:00 4403 2
原创 训练CV模型常用的方法与技巧
对测试集做增强,不适应太高级的增强方式,常见的如改变图像尺度,crop不同的地方,进行翻转等。虽然下面的模型距离现在相隔几年,但是它们出众的性能,使得它们仍在比赛中占据前排,这几年虽然出了更好的模型,但很多模型未开源或是太大了,并未得到更广泛的应用。Ranger:Ranger 优化器是一个非常有趣的优化器,它在性能优化方面的解决方案中取得了不错的成绩,但它不是很出名或不受支持。Student模型训练:在大模型的基础上,训练一个基于教师输出的学生模型作为额外的软标签损失函数,通过插值调整两个损失函数的比例。
2023-03-05 13:48:21 1860
原创 目标检测开源数据集汇总
这个问题的主要挑战来自产品类别的大规模和细粒度特性,以及由于产品的不断更新,难以收集反映真实结账场景的训练图像。尽管具有重要的实践和研究价值,但这个问题在计算机视觉社区中并没有得到广泛的研究,主要是由于缺乏高质量的数据集。0 个显着对象:338 个图像 1 个显着对象:611 个图像 2 个显着对象:155 个图像 3 个显着对象:100 个图像 4+ 显着对象:20 张图像。缺点:图片为不同的尺寸。该数据集包含YOLO格式的足球和板球的注释图像,为Open Image Dataset 的一个子集。
2023-03-04 17:38:55 825
原创 这些Python计算机视觉工具,帮你coding事半功倍
该框架是一个集合的图像分类,分割,检测和姿态估计模型。Imutils是一个计算机视觉软件包,包括一系列OpenCV +方便的功能,使基本的图像处理功能,如平移,旋转,调整大小,骨架化,显示Matplotlib图像,排序轮廓,检测边缘等相当容易。fastai包括各种特性,比如一个gpu优化的计算机视觉库,它可以在纯Python中扩展,一个新的Python类型分派系统以及一个用于张量的语义类型层次结构等等。该库提供了一系列完整的图像处理功能来处理数据集,以及一个全面和优化的功能范围的2D和3D图像处理。
2023-03-04 17:28:44 1436
原创 [大模型补课]当代AI的基石数据集
这里有一个很有趣的数字是整个维基百科的数据量只有不到100GB,甚至比github上的代码还少,这可是人类很大一部分知识啊。我感觉除了Books以外,CommonCrawl应该包含了剩下的其他数据集,Meta在训练的时候还额外加入它们,是否等价于调整了数据的权重让高质量的网络内容出现得更多一些?GPT3用的数据其实没有公开,Meta这次论文里提到的应该算是开源模型里一个最全的版本。根据他们博客的最新数据,2023年二月版的数据包含了400TB的数据(纯文本的数据是9个多tb),三十多亿个网页。
2023-02-28 10:19:55 299
原创 五年时间被引用3.8万次,Transformer宇宙发展成了这样
这一特别的趋势很快就引起了研究界的注意。在接下来的几个月里,大多数与语言相关的 ML 任务排行榜完全被某个版本的 Transformer 架构所主导(比方说,著名的 SQUAD 排行榜,其中所有位于顶部的模型都是 Transformer 的集合)。从上面的描述可以清楚地看出,模型体系架构唯一的特别元素是多头注意力,但是,正如上面所描述的,这正是模型的全部力量所在。与循环网络和卷积网络相比,注意力层有几个优势,最重要的两个是它们较低的计算复杂性和较高的连通性,特别是对于学习序列中的长期依赖关系非常有用。
2023-02-25 13:55:15 115
原创 浅谈频率学派和贝叶斯学派
贝叶斯学派对概率的定义:贝叶斯学派评估事件A发生的概率带有主观性,且事件A发生的概率是当前观测数据集D下的概率,即条件概率P(A|D),当观测数据集更新为D1时,则事件A发生的概率为P(A|D1),不同的数据集预测A事件发生的概率不同。但是假如评估本世纪末北极圈的冰川消失的概率,按照频率学派的思想,首先需要创造无数个平行世界,然后计算北极圈冰川消失的平行世界的频率,记该频率为冰川消失的概率。事件A,B同时发生的概率等于事件A发生的概率与事件A发生的条件下事件B发生的概率的乘积。
2023-02-24 15:07:34 278
原创 用 Python 从单个文本中提取关键字的四种超棒的方法
本文关键字:关键字提取、关键短语提取、Python、NLP、TextRank、Rake、BERT在我之前的文章中,我介绍了使用 Python 和 TFIDF 从文本中提取关键词,TFIDF 方法依赖于语料库统计来对提取的关键字进行加权,因此它的缺点之一是不能应用于单个文本。为了说明每种关键字提取方法(Rake、Yake、Keybert 和 Textrank)的实现原理,将使用已发表的文章[1]的摘要以及主题指定的关键字,并通过检查哪些方法的提取的关键词与作者设置的关键词更接近,来检验每种方法。
2023-02-22 23:27:35 4377
原创 机器学习超全数据集汇总
在构造数据集的时候,要注意做好数据的清洗和标注,一个高质量的数据集往往能够提高模型训练的质量和预测的准确率。在缺乏数据的情况下,可以尝试寻找一些公开数据集,特别是得到公认的被普遍使用的数据集。模型的选择、构建很重要,训练数据对模型也是非常重要的,在改变模型架构来尝试提高模型预测准确率的同时,也需要注意提高输入数据的质量,同时也考虑增加输入数据的数量,看是否能够提高模型的预测效果。在比赛中,参与者被给予大量时间序列的呼吸,并将学习在给定控制输入的时间序列的情况下预测呼吸期间呼吸回路中的气道压力。
2023-02-21 21:09:28 3140 2
原创 【推荐收藏】13个强大的Al网站
了、为所有创作者提供的应用程序、插件和资源的终极生态系统。自动删除图片中的物体、人物、文字和缺陷。11、用Al在几秒钟内生成吸引人眼球的漂亮视觉效果和广告,将其用于您的业务、社交媒体、营销、设计和复制。2、有史以来最逼真、功能最全面的人工智能语音软件。它从你的文本输入中为你提供最引人注目、最丰富和最逼真的声音。3、你可以用简单的英语问任何问题,它自动生成数据形式的答案。8、你的个人摄影师。1、只需几分钟就能轻松地生成一个标志、书籍封面、横幅和更多。12、从任何网站提取和监测数据的最简单方法。
2023-02-21 18:21:56 6098
原创 PyTorch 工作流程
通过优化器更新参数, 数值的高意味着优化器将尝试更大的更新(这些有时可能太大,优化器将无法工作),数值设置的低意味着优化器将尝试更小的更新(这些有时可能太小,优化器将花费太长时间才能找到理想值)。更直观,但是这种方法(保存整个模型)的缺点是序列化数据绑定到特定类以及保存模型时需使用确切目录结构,因此,你的代码在其他项目中使用时或在重构后可能会以各种方式中断。机器学习和深度学习的本质是从过去获取一些数据,构建算法(如神经网络)来发现其中的模式,并使用发现的模式来预测未来。(例如上面的线性回归公式)。
2023-02-21 09:01:53 701
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人