用 Python 从单个文本中提取关键字的四种超棒的方法

自然语言处理分析的最基本和初始步骤是关键词提取,在NLP中,我们有许多算法可以帮助我们提取文本数据的关键字。本文中,云朵君将和大家一起学习四种即简单又有效的方法,它们分别是 Rake、Yake、Keybert 和 Textrank。并将简单概述下每个方法的使用场景,然后使用附加示例将其应用于提取关键字。
本文关键字:关键字提取、关键短语提取、Python、NLP、TextRank、Rake、BERT

在我之前的文章中,我介绍了使用 Python 和 TFIDF 从文本中提取关键词,TFIDF 方法依赖于语料库统计来对提取的关键字进行加权,因此它的缺点之一是不能应用于单个文本。

为了说明每种关键字提取方法(Rake、Yake、Keybert 和 Textrank)的实现原理,将使用已发表的文章[1]的摘要以及主题指定的关键字,并通过检查哪些方法的提取的关键词与作者设置的关键词更接近,来检验每种方法。在关键词提取任务中,有显式关键词,即显式地出现在文本中;也有隐式关键词,即作者提到的关键词没有显式地出现在文本中,而是与文章的领域相关。

在上图展示的示例中,有文本标题和文章摘要,标准关键字(由作者在原始文章中定义)被标记为黄色。注意machine learning这个词并不明确,也没有在摘要中找到。虽然可以在文章的全文中提取,但这里为了简单起见,语料数据仅限于摘要。

文本准备


标题通常与提供的文本相结合,因为标题包含有价值的信息,并且高度概括了文章的内容。因此,我们将文本和标题两个变量之间通过加上一个加号而简单地拼接。

title = "VECTORIZATION OF TEXT USING DATA MINING METHODS"

text = "In the text mining tasks, textual representation should be not only efficient but also interpretable, as this enables an understanding of the operational logic underlying the data mining models. Traditional text vectorization methods such as TF-IDF and bag-of-words are effective and characterized by intuitive interpretability, but suffer from the «curse of dimensionality», and they are unable to capture the meanings of words. On the other hand, modern distributed methods effectively capture the hidden semantics, but they are computationally intensive, time-consuming, and uninterpretable. This article proposes a new text vectorization method called Bag of weighted Concepts BoWC that presents a document according to the concepts’ information it contains. The proposed method creates concepts by clustering word vectors (i.e. word embedding) then uses the frequencies of these concept clusters to represent document vectors. To enrich the resulted document representation, a new modified weighting function is proposed for weighting concepts based on statistics extracted from word embedding information. The generated vectors are characterized by interpretability, low dimensionality, high accuracy, and low computational costs when used in data mining tasks. The proposed method has been tested on five different benchmark datasets in two data mining tasks; document clustering and classification, and compared with several baselines, including Bag-of-words, TF-IDF, Averaged GloVe, Bag-of-Concepts, and VLAC. The results indicate that BoWC outperforms most baselines and gives 7% better accuracy on average"


full_text = title +", "+ text 

print("The whole text to be usedn", full_text)

现在开始使用今天的四个主角来提取关键字!

Yake


它是一种轻量级、无监督的自动关键词提取方法,它依赖于从单个文档中提取的统计文本特征来识别文本中最相关的关键词。该方法不需要针对特定的文档集进行训练,也不依赖于字典、文本大小、领域或语言。Yake 定义了一组五个特征来捕捉关键词特征,这些特征被启发式地组合起来,为每个关键词分配一个分数。分数越低,关键字越重要。你可以阅读原始论文[2],以及yake 的Python 包[3]关于它的信息。

特征提取主要考虑五个因素(去除停用词后)

大写term

(Casing)

大写字母的term(除了每句话的开头单词)的重要程度比那些小写字母的term重要程度要大。

其中, 表示该词的大写次数, 表示该词的缩写次数。

词的位置

(Word Position)

文本越开头的部分句子的重要程度比后面的句子重要程度要大。

其中 表示包含该词的所有句子在文档中的位置中位数。

词频

(Term Frequency)

一个词在文本中出现的频率越大,相对来说越重要,同时为了避免长文本词频越高的问题,会进行归一化操作。

其中,MeanTF是整个词的词频均值, 是标准差。

上下文关系

(Term Related to Context)

一个词与越多不相同的词共现,该词的重要程度越低。

其中 表示窗口size为 从左边滑动, 表示从右边滑动。 表示出现在固定窗口大小为 下,出现不同的词的个数。 表示所有词频的最大值。

词在句子中出现的频率

(Term Different Sentence)

一个词在越多句子中出现,相对更重要

其中 SF(t) 是包含词t tt的句子频率, 表示所有句子数量。

最后计算每个term的分值公式如下:

S(t)表示的是单词t 的分值情况,其中 s(t)分值越小,表示的单词 t越重要。

安装和使用

pip install git+https://github.com/LIAAD/yake 
import yake

首先从 Yake 实例中调用 KeywordExtractor 构造函数,它接受多个参数,其中重要的是:要检索的单词数top,此处设置为 10。参数 lan:此处使用默认值en。可以传递停用词列表给参数 stopwords。然后将文本传递给 extract_keywords 函数,该函数将返回一个元组列表 (keyword: score)。关键字的长度范围为 1 到 3。

kw_extractor = yake.KeywordExtractor(top=10, stopwords=None)
keywords = kw_extractor.extract_keywords(full_text)
for kw, v in keywords:
   print("Keyphrase: ",kw, ": score", v)

从结果看有三个关键词与作者提供的词相同,分别是text mining, data miningtext vectorization methods。注意到Yake会区分大写字母,并对以大写字母开头的单词赋予更大的权重。

Rake


Rake 是 Rapid Automatic Keyword Extraction 的缩写,它是一种从单个文档中提取关键字的方法。实际上提取的是关键的短语(phrase),并且倾向于较长的短语,在英文中,关键词通常包括多个单词,但很少包含标点符号和停用词,例如and,the,of等,以及其他不包含语义信息的单词。

Rake算法首先使用标点符号(如半角的句号、问号、感叹号、逗号等)将一篇文档分成若干分句,然后对于每一个分句,使用停用词作为分隔符将分句分为若干短语,这些短语作为最终提取出的关键词的候选词。

每个短语可以再通过空格分为若干个单词,可以通过给每个单词赋予一个得分,通过累加得到每个短语的得分。Rake 通过分析单词的出现及其与文本中其他单词的兼容性(共现)来识别文本中的关键短语。最终定义的公式是:

即单词 的得分是该单词的度(是一个网络中的概念,每与一个单词共现在一个短语中,度就加1,考虑该单词本身)除以该单词的词频(该单词在该文档中出现的总次数)。

然后对于每个候选的关键短语,将其中每个单词的得分累加,并进行排序,RAKE将候选短语总数的前三分之一的认为是抽取出的关键词。

安装和使用

# $ git clone https://github.com/zelandiya/RAKE-tutorial
# 要在python代码中导入rake:
import rake 
import operator

# 加载文本并对其应用rake:
filepath = "keyword_extraction.txt"
rake_object = rake.Rake(filepath)
text = "Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequations, and nonstrict inequations are considered.Upper bounds for components of a minimal set of solutions and algorithms of construction of minimal generatingsets of solutions for all types of systems are given. These criteria and the corresponding algorithms for constructing a minimal supporting set of solutions can be used in solving all the considered types of systems and systems of mixed types."
sample_file = open(“data/docs/fao_test/w2167e.txt”, ‘r’)
text = sample_file.read()
keywords = rake_object.run(text) print “Keywords:”, keywords

候选关键字

如上所述,我们知道RAKE通过使用停用词和短语分隔符解析文档,将包含主要内容的单词分类为候选关键字。这基本上是通过以下一些步骤来完成的,首先,文档文本被特定的单词分隔符分割成一个单词数组,其次,该数组再次被分割成一个在短语分隔符和停用单词位置的连续单词序列。最后,位于相同序列中的单词被分配到文本中的相同位置,并一起被视为候选关键字。

stopwordpattern = rake.build_stop_word_regex(filepath)
phraseList = rake.generate_candidate_keywords(sentenceList, stopwordpattern)

关键词得分

从文本数据中识别出所有候选关键字后,将生成单词共现图,该图计算每个候选关键字的分数,并定义为成员单词分数。借助该图,我们根据图中顶点的程度和频率评估了计算单词分数的几个指标。

keywordcandidates = rake.generate_candidate_keyword_scores(phraseList, wordscores)

提取关键词

计算候选关键字得分后,将从文档中选择前T个候选关键字。T值是图中字数的三分之一。

totalKeywords = len(sortedKeywords)
for keyword in sortedKeywords[0:(totalKeywords / 3)]: 
      print “Keyword: “, keyword[0], “, score: “, keyword[1]

另一个库

# pip install multi_rake
from multi_rake import Rake
rake = Rake()
keywords = rake.apply(full_text)
print(keywords[:10])

TextRank


TextRank 是一种用于提取关键字和句子的无监督方法。它一个基于图的排序算法。其中每个节点都是一个单词,边表示单词之间的关系,这些关系是通过定义单词在预定大小的移动窗口内的共现而形成的。

该算法的灵感来自于 Google 用来对网站进行排名的 PageRank。它首先使用词性 (PoS) 对文本进行标记和注释。它只考虑单个单词。没有使用 n-gram,多词是后期重构的。

TextRank算法是利用局部词汇之间关系(共现窗口)对后续关键词进行排序,直接从文本本身抽取。其主要步骤如下:

  1. 把给定的文本T按照完整句子进行分割,即

  1. 对于每个句子,进行分词和词性标注处理,并过滤掉停用词,只保留指定词性的单词,如名词、动词、形容词,即

其中是保留后的候选关键词。

  1. 构建候选关键词图G=(V, E) ,其中V为节点集,由(2)生成的候选关键词组成,然后采用共现关系co-occurrence构造任两点之间的边,两个节点之间存在边仅当它们对应的词汇在长度为K的窗口中共现,K表示窗口大小,即最多共现K个单词。

  1. 根据上面公式,迭代传播各节点的权重,直至收敛。

  1. 对节点权重进行倒序排序,从而得到最重要的T个单词,作为候选关键词。

  1. 由(5)得到最重要的T个单词,在原始文本中进行标记,若形成相邻词组,则组合成多词关键词。例如,文本中有句子“Matlab code for plotting ambiguity function”,如果“Matlab”和“code”均属于候选关键词,则组合成“Matlab code”加入关键词序列。

安装及使用

要使用Textrank生成关键字,必须首先安装 summa 包,然后必须导入模块 keywords

pip install summa 
from summa import keywords

之后,只需调用 keywords 函数并将要处理的文本传递给它。我们还将 scores 设置为 True 以打印出每个结果关键字的相关性。

TR_keywords = keywords.keywords(full_text, scores=True) 
print(TR_keywords[0:10])

KeyBERT


KeyBERT[4]是一种简单易用的关键字提取算法,它利用 SBERT 嵌入从文档中生成与文档更相似的关键字和关键短语。首先,使用 sentences-BERT 模型生成文档embedding。然后为 N-gram 短语提取词的embedding。然后使用余弦相似度测量每个关键短语与文档的相似度。最后将最相似的词识别为最能描述整个文档并被视为关键字的词。

安装和使用

要使用 keybert 生成关键字,必须先安装 keybert 包,然后才能导入模块 keyBERT。

pip install keybert
from keybert import KeyBERT

然后创建一个接受一个参数的 keyBERT 实例,即 Sentences-Bert 模型。可以从以下来源[5]中选择想要的任何embedding模型。根据作者的说法,all-mpnet-base-v2模型是最好的。

kw_model = KeyBERT(model='all-mpnet-base-v2')
它将像这样开始下载:

下载 BERT 预训练模型

keywords = kw_model.extract_keywords(full_text, 
                                     keyphrase_ngram_range=(1, 3), 
                                     stop_words='english', 
                                     highlight=False, 
                                     top_n=10) 

keywords_list= list(dict(keywords).keys()) 
print(keywords_list)

考虑到大多数关键短语的长度在 1 到 2 之间,可以将 keyphrase_ngram_range 更改为 (1,2)。这次我们将 highlight 设置为 true。


参考资料

[1]

文章: https://www.researchgate.net/publication/353592446_TEXT_VECTORIZATION_USING_DATA_MINING_METHODS

[2]

论文: https://www.sciencedirect.com/science/article/abs/pii/S0020025519308588

[3]

yake包: https://github.com/LIAAD/yake

[4]

KeyBERT: https://github.com/MaartenGr/KeyBERT

[5]

pretrained_models: https://www.sbert.net/docs/pretrained_models.html

[6]

https://links.jianshu.com/go?to=https%3A%2F%2Fmedium.datadriveninvestor.com%2Frake-rapid-automatic-keyword-extraction-algorithm-f4ec17b2886c

[7]

https://blog.csdn.net/chinwuforwork/article/details/77993277

  • 1
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目录 1. 安装 Python 1.1. 哪一种 Python 适合您? 1.2. Windows 上的 Python 1.3. Mac OS X 上的 Python 1.4. Mac OS 9 上的 Python 1.5. RedHat Linux 上的 Python 1.6. Debian GNU/Linux 上的 Python 1.7. 从源代码安装 Python 1.8. 使用 Python 的交互 Shell 1.9. 小结 2. 第一个 Python 程序 2.1. 概览 2.2. 函数声明 2.2.1. Python 和其他编程语言数据类型的比较 2.3. 文档化函数 2.4. 万物皆对象 2.4.1. 模块导入的搜索路径 2.4.2. 何谓对象? 2.5. 代码缩进 2.6. 测试模块 3. 内置数据类型 3.1. Dictionary 介绍 3.1.1. Dictionary 的定义 3.1.2. Dictionary 的修改 3.1.3. 从 dictionary 删除元素 3.2. List 介绍 3.2.1. List 的定义 3.2.2. 向 list 增加元素 3.2.3. 在 list 搜索 3.2.4. 从 list 删除元素 3.2.5. 使用 list 的运算符 3.3. Tuple 介绍 3.4. 变量声明 3.4.1. 变量引用 3.4.2. 一次赋多值 3.5. 格式化字符串 3.6. 映射 list 3.7. 连接 list 与分割字符串 3.7.1. 字符串方法的历史注解 3.8. 小结 4. 自省的威力 4.1. 概览 4.2. 使用可选参数和命名参数 4.3. 使用 type、str、dir 和其它内置函数 4.3.1. type 函数 4.3.2. str 函数 4.3.3. 内置函数 4.4. 通过 getattr 获取对象引用 4.4.1. 用于模块的 getattr 4.4.2. getattr 作为一个分发者 4.5. 过滤列表 4.6. and 和 or 的特殊性质 4.6.1. 使用 and-or 技巧 4.7. 使用 lambda 函数 4.7.1. 真实世界的 lambda 函数 4.8. 全部放在一起 4.9. 小结 5. 对象和面向对象 5.1. 概览 5.2. 使用 from module import 导入模块 5.3. 类的定义 5.3.1. 初始化并开始类编码 5.3.2. 了解何时去使用 self 和 __init__ 5.4. 类的实例化 5.4.1. 垃圾回收 5.5. 探索 UserDict:一个封装类 5.6. 专用类方法 5.6.1. 获得和设置数据项 5.7. 高级专用类方法 5.8. 类属性介绍 5.9. 私有函数 5.10. 小结 6. 异常和文件处理 6.1. 异常处理 6.1.1. 为其他用途使用异常 6.2. 与文件对象共事 6.2.1. 读取文件 6.2.2. 关闭文件 6.2.3. 处理 I/O 错误 6.2.4. 写入文件 6.3. for 循环 6.4. 使用 sys.modules 6.5. 与目录共事 6.6. 全部放在一起 6.7. 小结 7. 正则表达式 7.1. 概览 7.2. 个案研究:街道地址 7.3. 个案研究:罗马字母 7.3.1. 校验千位数 7.3.2. 校验百位数 7.4. 使用 {n,m} 语法 7.4.1. 校验十位数和个位数 7.5. 松散正则表达式 7.6. 个案研究:解析电话号码 7.7. 小结 8. HTML 处理 8.1. 概览 8.2. sgmllib.py 介绍 8.3. 从 HTML 文档提取数据 8.4. BaseHTMLProcessor.py 介绍 8.5. locals 和 globals 8.6. 基于 dictionary 的字符串格式化 8.7. 给属性值加引号 8.8. dialect.py 介绍 8.9. 全部放在一起 8.10. 小结 9. XML 处理 9.1. 概览 9.2. 包 9.3. XML 解析 9.4. Unicode 9.5. 搜索元素 9.6. 访问元素属性 9.7. Segue 10. 脚本和流 10.1. 抽象输入源 10.2. 标准输入、输出和错误 10.3. 查询缓冲节点 10.4. 查找节点的直接子节点 10.5. 根据节点类型创建不同的处理器 10.6. 处理命令行参数 10.7. 全部放在一起 10.8. 小结 11. HTTP Web 服务 11.1. 概览 11.2. 避免通过 HTTP 重复地获取数据 11.3. HTTP 的特性 11.3.1. 用户代理 (User-Agent) 11.3.2. 重定向 (Redirects) 11.3.3. Last-Modified/If-Modified-Since 11.3.4. ETag/If-None-Match 11.3.5. 压缩 (Compression) 11.4. 调试 HTTP web 服务 11.5. 设置 User-Agent 11.6. 处理 Last-Modified 和 ETag 11.7. 处理重定向 11.8. 处理压缩数据 11.9. 全部放在一起 11.10. 小结 12. SOAP Web 服务 12.1. 概览 12.2. 安装 SOAP 库 12.2.1. 安装 PyXML 12.2.2. 安装 fpconst 12.2.3. 安装 SOAPpy 12.3. 步入 SOAP 12.4. SOAP 网络服务查错 12.5. WSDL 介绍 12.6. 以 WSDL 进行 SOAP 内省 12.7. 搜索 Google 12.8. SOAP 网络服务故障排除 12.9. 小结 13. 单元测试 13.1. 罗马数字程序介绍 II 13.2. 深入 13.3. romantest.py 介绍 13.4. 正面测试 (Testing for success) 13.5. 负面测试 (Testing for failure) 13.6. 完备性检测 (Testing for sanity) 14. 测试优先编程 14.1. roman.py, 第 1 阶段 14.2. roman.py, 第 2 阶段 14.3. roman.py, 第 3 阶段 14.4. roman.py, 第 4 阶段 14.5. roman.py, 第 5 阶段 15. 重构 15.1. 处理 bugs 15.2. 应对需求变化 15.3. 重构 15.4. 后记 15.5. 小结 16. 函数编程 16.1. 概览 16.2. 找到路径 16.3. 重识列表过滤 16.4. 重识列表映射 16.5. 数据心思想编程 16.6. 动态导入模块 16.7. 全部放在一起 16.8. 小结 17. 动态函数 17.1. 概览 17.2. plural.py, 第 1 阶段 17.3. plural.py, 第 2 阶段 17.4. plural.py, 第 3 阶段 17.5. plural.py, 第 4 阶段 17.6. plural.py, 第 5 阶段 17.7. plural.py, 第 6 阶段 17.8. 小结 18. 性能优化 18.1. 概览 18.2. 使用 timeit 模块 18.3. 优化正则表达式 18.4. 优化字典查找 18.5. 优化列表操作 18.6. 优化字符串操作 18.7. 小结 A. 进一步阅读 B. 五分钟回顾 C. 技巧和窍门 D. 示例清单 E. 修订历史 F. 关于本书 G. GNU Free Documentation License G.0. Preamble G.1. Applicability and definitions G.2. Verbatim copying G.3. Copying in quantity G.4. Modifications G.5. Combining documents G.6. Collections of documents G.7. Aggregation with independent works G.8. Translation G.9. Termination G.10. Future revisions of this license G.11. How to use this License for your documents H. GNU 自由文档协议 H.0. 序 H.1. 适用范围和定义 H.2. 原样复制 H.3. 大量复制 H.4. 修改 H.5. 合并文档 H.6. 文档合集 H.7. 独立著作聚集 H.8. 翻译 H.9. 终止协议 H.10. 协议将来的修订 H.11. 如何为你的文档使用本协议 I. Python license I.A. History of the software I.B. Terms and conditions for accessing or otherwise using Python I.B.1. PSF license agreement I.B.2. BeOpen Python open source license agreement version 1 I.B.3. CNRI open source GPL-compatible license agreement I.B.4. CWI permissions statement and disclaimer J. Python 协议 J.0. 关于译文的声明 J.A. 软件的历史 J.B. 使用 Python 的条款和条件 J.B.1. PSF 协议 J.B.2. BeOpen Python 开源协议第 1 版 J.B.3. CNRI 开源 GPL 兼容协议 J.B.4. CWI 许可声明与免责声明
好的,我可以为您提供一些思路和代码示例。 1. 提取关键字 可以使用Python的jieba库进行文分词,然后根据关键词库过滤出关键词。示例代码如下: ```python import jieba # 加载自定义关键词库 jieba.load_userdict('keywords.txt') # 分词并过滤关键词 def extract_keywords(text): words = jieba.cut(text) keywords = [] for word in words: if word in ['关键词1', '关键词2', '关键词3']: keywords.append(word) return keywords ``` 其,'keywords.txt'是自定义的关键词库文件,可以在其添加需要过滤的关键词。 2. 计算词频 可以使用Python的collections库的Counter类进行词频统计。示例代码如下: ```python from collections import Counter # 统计词频 def word_count(text): words = jieba.cut(text) word_counts = Counter(words) return word_counts ``` 该函数返回一个字典类型的词频统计结果,其键为单词,值为出现次数。 3. 计算文本相似度 可以使用Python的gensim库进行文本相似度计算,该库提供了多种文本相似度计算方法。示例代码如下: ```python from gensim import corpora, models, similarities # 构建文本集合 texts = ['文本1', '文本2', '文本3'] # 分词 texts = [jieba.cut(text) for text in texts] # 构建词典 dictionary = corpora.Dictionary(texts) # 构建语料库 corpus = [dictionary.doc2bow(text) for text in texts] # 训练TF-IDF模型 tfidf = models.TfidfModel(corpus) # 构建索引 index = similarities.MatrixSimilarity(tfidf[corpus]) # 计算相似度 query = '查询文本' query_bow = dictionary.doc2bow(jieba.cut(query)) sims = index[tfidf[query_bow]] ``` 其,texts为需要计算相似度的文本集合,query为需要查询相似度的文本。sims为一个列表,其每一个元素为相应文本与查询文本的相似度。 以上是一些基本的思路和代码示例,您可以根据具体需求进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值