py之numpy基础(一)

本文介绍了Python科学计算库Numpy的基础知识,包括Numpy在量化数据分析中的重要性,如何创建ndarray数组,如设置维度、数据类型,以及数组的矢量化计算。同时,讲解了矩阵数组的索引和切片,包括基本索引、布尔索引和花式索引的用法。
摘要由CSDN通过智能技术生成

一、Numpy概述
Numpy是Python很多科学计算与工程库的基础库,在量化数据分析中最常用使用的Pandas也是基于Numpy的封装。可以说Numpy就是量化数据分析领域中的基础数组,可以构造一个比普通列表大得多的数组,并且灵活高效地对数组中所有的元素进行并行化操作。
二、创建ndarray数组
多维矩阵的属性:ndim属性,表示维度个数;shape属性,表示各维度大小;dtype属性,表示数据类型。

import numpy as np
a=np.array([[1,2],[3,4]])
print(a)
##
[[1 2]
 [3 4]]

创建数字为0的一维数组

import numpy as np
x==np.zeros(6)
print(x)
##
[0. 0. 0. 0. 0. 0.]

创建2行3列二维数组

import numpy as np
x=np.ones((2,3))
print(x)
##
[[1. 1. 1.]
 [1. 1. 1.]]

生成指定元素类型的数组:设置dtype属性

import numpy as np
x=np.array([
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值