纳什均衡的存在性证明

乘积空间

假设玩家的行为集A=(a1,a2,a3),玩家1的某个混合策略可由ABC上某一点表示,策略空间如下:

在这里插入图片描述

乘积空间如下:玩家1、2的混合策略与乘积上的点(正方形)相对应。

在这里插入图片描述

counter

对于当前局势,玩家i可以根据其余n-1个玩家调整自己的混合策略,使自己收益最大化。
到某一轮counter时,所有玩家保持不变,说明谁也无法通过调整策略来改善收益,即存在纳什均衡

Brouwer’s Fixed-Point Theorem

1. M是凸的、有界、闭集

  • 凸集:对于M内的任意两点,其连线上的点也都∈M。
  • 有界:M内的任意两元素之间的距离是有限大的。
  • 闭集:类比闭区间,可以简单理解成M边界上的点也都∈M。

2. f:M→M:自身到自身的映射,即若x∈M,则f(x)∈M。

  • 连续映射:对于M上的任意一点x,其经过映射后变成f(x),然后对于M上的另一点x’,只要x’与x之间的距离趋于0,那么f(x’)和f(x)之间的距离也会趋近于0。

3. 一定存在某个x∈M,使得f(x) = x 。

纳什均衡的存在性

在乘积空间上必然存在一个不动点,使得经过counter后保持不变,即实现了纳什均衡。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值