乘积空间
假设玩家的行为集A=(a1,a2,a3),玩家1的某个混合策略可由ABC上某一点表示,策略空间如下:
乘积空间如下:玩家1、2的混合策略与乘积上的点(正方形)相对应。
counter
对于当前局势,玩家i可以根据其余n-1个玩家调整自己的混合策略,使自己收益最大化。
到某一轮counter时,所有玩家保持不变,说明谁也无法通过调整策略来改善收益,即存在纳什均衡。
Brouwer’s Fixed-Point Theorem
1. M是凸的、有界、闭集
- 凸集:对于M内的任意两点,其连线上的点也都∈M。
- 有界:M内的任意两元素之间的距离是有限大的。
- 闭集:类比闭区间,可以简单理解成M边界上的点也都∈M。
2. f:M→M:自身到自身的映射,即若x∈M,则f(x)∈M。
- 连续映射:对于M上的任意一点x,其经过映射后变成f(x),然后对于M上的另一点x’,只要x’与x之间的距离趋于0,那么f(x’)和f(x)之间的距离也会趋近于0。
3. 一定存在某个x∈M,使得f(x) = x 。
纳什均衡的存在性
在乘积空间上必然存在一个不动点,使得经过counter后保持不变,即实现了纳什均衡。