素数的筛选的简化。合数存在素因子小于它的开方的证明。

一.判断一个数是素数

  1.判断一个整数n是素数,即n>1并且n只能被自身和1整除。

  2.根据整数的性质,合数有存在素因子小于它的开方(表述为n存在素因子p < = √n)这样可以简化判断一个数是否为素数的计算量。

#include <iostream>
#include <math.h> 
bool isPrime(int n);
using namespace std;


int main(){
	int n;
	cin>>n;
	if(n!=1){
		if(isPrime(n)) cout<<"su"<<endl;
		else cout<<"feisu"<<endl;
	}else cout<<"feisufeihe"<<endl;
	return 0;
} 

bool isPrime(int n){
	//判断从2到√n是否有n的素因子
	for(int i=2;i<=sqrt(n);i++){
		if(n%i==0)	return false;
	}
	return true;
}

  3.现在我们来证明一下为什么有这条性质!(一个合数存在素因子小于等于它的开方)

  Ⅰ.首先我们得知道大于或等于2的整数n至少存在一个素因子。(证明方法其实挺多的,我就说一种我认为特好懂的。)
    关于Ⅰ的证明:如果n为素数的话显然成立,如果为合数的话n可以表示为 n = p1 * n1(p1为它的最小真因子)p1显然为素数,因为p1的真因子就是n的真因子,显然p1不能有真因子,所以它为素数。得证!其实这是唯一分解定理的部分证明hah!

  Ⅱ.合数n至少有一个素因子,所以 n = p * q ,我们假设p为它的素因子。如果p <= √n <= q 显然性质成立。如果q <= √n <= p 此时分两种,q如果为合数的话可以分解出一个素因子小于√n此时成立,q如果为素数的显然也成立。得证!(这个是我自己想的详细版的!)

  Ⅲ.另外的一种证明方法为,假设p <= √n <= q,假设p > √n此时p * q > n矛盾,假设不成立,所以我们的第一个假设成立,结论得证。(这个是数学家们给出的证明,我想了好一会才明白,原来他们省略了可能他们觉得很简单的!)

谢谢看完!小白记录!如有纰漏,还请指正!谢谢大家

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值