Flink的任务链

Flink的任务链

Flink 中的每个算子都可以设置并行度,每个算子的一个并行度实例就是一个 subTask。由于 Flink 的 TaskManager 运行 Task 的时候是每个 Task 采用一个单独的线程,这会带来很多线程切换和数据交换的开销,进而影响吞吐量。
为了避免数据在网络或线程之间传输导致的开销,Flink 会在 JobGraph 阶段,将代码中可以优化的算子优化成一个算子链(Operator Chains)以放到一个 Task 中执行。
用户也可以自己指定相应的链条,将相关性非常强的转换操作绑定在一起,这样能够让转换过程中上下游的 Task 在同一个 Pipeline 中执行,进而避免因为数据在网络或者线程间传输导致的开销,提高整体的吞吐量和延迟。
一般情况下,Flink 在 Map 操作中默认开启 TaskChain,以提高 Flink 作业的整体性能。
如图1,Source 和 Map 在优化后,组成一个算子链,作为一个 task 运行在一个线程上,其简图如 Condensed view 所示,并行图如 parellelized view 所示。
在这里插入图片描述
Flink提供了更细粒度的任务链控制方法,用户可根据需求创建任务链或禁止任务链。

禁用全局任务链

evn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值