自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

行知SLAM

专注机器人及自动驾驶领域

  • 博客(410)
  • 资源 (1)
  • 收藏
  • 关注

原创 第0章 《机器人工程师带你入门SLAM》专栏所有文章目录汇总(截止目前115篇文章),方便大家查看阅读

《机器人工程师带你入门SLAM》专栏文章汇总:CSDN热销专栏已更新100+篇优质内容,涵盖SLAM技术全栈知识体系。文章分为三大类:1)基础工具与环境配置,包括Ubuntu、Git等必备技能;2)C++编程从入门到进阶,详解变量、类、模板等核心概念;3)SLAM核心库实战,深入解析ROS、Eigen、PCL等关键库的应用。专栏提供从计算机基础到项目实战的系统学习路径,并附代码实例。点击专栏主页可订阅查看全部内容,后续将保持更新。

2025-11-18 17:51:13 538

原创 第5.2章 【自动驾驶行业融合定位核心】:手把手详解ESKF(误差卡尔曼滤波)理论公式及代码

自动驾驶定位中的ESKF(误差卡尔曼滤波)技术是解决IMU累积误差的关键,通过分离名义状态与误差状态实现高精度定位。其核心步骤包括:1)名义状态递推(位置/速度/姿态的基础物理计算);2)误差传播建模(雅可比矩阵F量化误差影响);3)协方差更新(评估定位不确定性)。ESKF在GNSS信号丢失(如隧道场景)、无卫星定位(地下车库)等场景发挥重要作用,通过融合多传感器数据维持定位精度。工程实现需解决零偏校准、协方差投影等关键问题,噪声参数需通过数据标定而非随意设置。掌握ESKF原理与实现是自动驾驶定位工程师的核

2025-10-13 17:44:09 370

原创 第0章 机器人及自动驾驶SLAM定位方法全解析及入门进阶学习建议

究竟什么是机器人及自动驾驶中的定位概念呢?想要深入探索这一领域,又需要构建怎样的知识体系?别急,本文将为您抽丝剥茧,详细解读,并贴心奉上实用的学习建议,助您开启这场充满魅力的科技求知之旅。

2025-01-04 08:25:37 2132

原创 第1章 机器人SLAM定位入门最全知识体系及资料推荐入门

机器人SLAM知识体系:多而杂。

2020-05-14 18:21:22 5976 1

原创 第6.17章 机器人自动驾驶SLAM中的数学总结(十七):外参标定全解析(附C++代码)

本文探讨了自动驾驶中的多传感器外参标定技术。首先分析了多传感器融合定位的现状,指出外参标定的核心目标是将不同传感器的数据统一到同一坐标系。接着系统梳理了经典标定方法(手眼标定、标定间标定等),详细推导了刚体变换数学原理,包括旋转矩阵和平移向量的求解过程。文章还介绍了主流开源标定工具(如Kalibr、Apollo标定工具),并展示了一个完整的C++项目实现,涵盖数据读取、2D-3D匹配、PNP求解、ICP配准等核心模块。最后强调动手实践的重要性,建议通过代码实现加深对理论的理解。

2025-12-16 10:37:16 26

原创 第4.0章 自动驾驶七大定位方法总结:从RTK、激光、视觉定位到UWB,一文掌握厘米级定位核心技术

本文系统介绍了自动驾驶融合定位的核心技术,重点分析了RTK、IMU、激光雷达等七大定位方法的原理与特性。通过多传感器协同实现厘米级定位,克服单一技术的局限性。文章包含组合导航的数学建模、C++实现代码及实战案例,为工程师提供从理论到实践的完整指导,满足自动驾驶对高精度、高可靠性定位的严苛需求。

2025-12-15 17:46:27 28

原创 第6.16章 机器人自动驾驶SLAM中的数学总结(十六):从WGS-84、UTM到车身坐标系总结

本文系统介绍了自动驾驶中的坐标系体系,涵盖WGS-84、UTM、ENU等七大核心坐标系及其应用场景。通过真实案例揭示了坐标系错误导致的定位灾难,详细阐述了坐标系知识体系的发展历程、数学原理和工程实践要点。文章还分析了Eigen、PCL、Ceres等第三方库中的坐标系处理方法,并提供了多坐标系融合定位系统的实现方案,为自动驾驶领域的工程师提供了全面的坐标系学习指南和实践参考。

2025-12-15 17:13:24 136

原创 第4.8章 自动驾驶融合定位方法总结(八):Apollo源码NDT地图生成——从点云到高精度定位地图的华丽转身

Apollo NDT地图生成器技术解析 摘要 本文深入剖析了Apollo自动驾驶平台中的NDT地图生成器实现,主要内容包括: 系统架构:详细解析NDT地图生成器的数据流程和核心处理步骤,从PCD点云输入到NDT地图输出的完整过程 关键算法:重点分析正态分布变换(NDT)的核心实现,包括增量式统计计算、协方差矩阵处理和多分辨率地图构建 代码结构:分类解析主要函数模块,包括地图单元处理、矩阵运算、节点管理等核心组件 性能优化:探讨内存管理、并行计算等实现细节,分析如何提升大规模点云处理的效率 应用价值:总结该实

2025-12-15 15:12:47 32

原创 第8.5章 自动驾驶组合导航定位驱动开发实战(六):TCP、串口和CAN导航通信到底有什么区别?

组合导航通信方式选型指南 在自动驾驶定位系统中,组合导航通信方式直接影响系统性能。本文分析了三种主流通信方案: TCP通信:适合远程监控和云端同步,带宽充足但存在网络延迟 串口通信:经典稳定,延迟低(<1ms),但传输距离短且扩展性差 CAN通信:车辆原生接口,支持多节点共享,特别适合轮速信号集成 实战建议: 研发测试推荐TCP+串口双模式 量产车集成首选CAN总线 高精度地图采集适用高速TCP 低速无人车可采用简单串口方案 未来趋势将向车载以太网演进,但当前项目仍应以稳定性和兼容性为首要考虑因素。

2025-12-09 09:47:01 40

原创 第4.7章 自动驾驶融合定位方法总结(七):激光定位之ICP定位算法全解析 - 从公式推导到工程实现

在自动驾驶的定位技术版图中,GNSS+RTK+INS的组合确实构成了绝对主力。在开阔的城郊道路、高速公路等场景,这套组合拳能够提供厘米级定位精度,看似完美解决了定位问题。但真实的城市驾驶环境远比想象中复杂:fill:#333;color:#333;color:#333;fill:none;理想GNSS环境真实城市环境高楼峡谷地下隧道多层高架密集林荫道信号反射/多径信号完全丢失信号时断时续信号衰减严重真实数据全天平均:87%早晚高峰:75%CBD区域:62%地下环路:0%

2025-12-03 15:04:29 62

原创 第4.6章 自动驾驶融合定位方法总结(六):PCL库与Apollo 中NDT实现代码对比分析及总结

本文对比分析了PCL和Apollo平台中NDT点云配准算法的实现差异。核心算法在数学理论基础(高斯分布模型、变换参数化、导数计算)上完全一致,但在代码结构、接口设计和性能优化方面存在显著区别。PCL采用模板化设计,遵循标准PCL接口规范;Apollo则更注重简洁性和实时性能,添加了计时功能等优化。两者在主优化流程(牛顿法+线搜索)上保持一致,但Apollo实现引入了更多性能监控机制。建议根据应用场景选择:PCL适合通用点云处理,Apollo更适合自动驾驶等实时系统。未来可结合两者的优势,在保持算法准确性的同

2025-12-03 14:31:18 26

原创 第4.5章 自动驾驶融合定位方法总结(五):PCL库中NDT实现源码解读与博士论文对比分析

本文深入分析PCL中NDT算法的实现与原始论文的理论对比。研究表明,PCL严格遵循Magnusson博士论文中的数学推导,包括概率密度函数、梯度计算和海森矩阵等核心公式。同时,PCL在实现中进行了多项改进:增强数值稳定性,优化步长搜索算法,改进邻域查询策略,并采用工程优化措施如模板化设计和预计算逆协方差矩阵。通过逐行源码注释,揭示了理论到实践的转换过程,为研究者和开发者提供了深入理解NDT算法的技术参考。

2025-12-03 14:26:14 27

原创 第4.4章 自动驾驶融合定位方法总结(四):Apollo NDT匹配原理及改进部分深度解析

摘要 本文深入解析了百度Apollo自动驾驶平台中的NDT(正态分布变换)定位算法实现。通过对比经典NDT算法,文章系统分析了Apollo NDT的工业级优化策略,包括:1)基于牛顿法和More-Thuente线搜索的改进优化框架;2)预计算与缓存机制提升的导数计算效率;3)VoxelGridCovariance体素网格结构优化。源码分析揭示了关键实现细节,如概率模型得分函数、梯度/海森矩阵计算等核心公式的工程化改进。性能对比表明,Apollo NDT通过自适应步长、KD树加速等优化,在保持算法理论一致性的

2025-12-03 11:54:17 29

原创 第4.3章 自动驾驶融合定位方法总结(三):一文彻底搞懂激光定位NDT匹配原理--从2D到3D完整推导(附C++代码)

本文系统介绍了自动驾驶中激光NDT定位的技术原理与工程实践。主要内容包括:激光NDT定位在组合导航失效场景下的关键补位作用,其相比ICP算法具有更强的鲁棒性和效率;详细推导了NDT算法的概率模型和优化过程;重点分析了Apollo平台对NDT的工业级优化,包括多分辨率地图、线搜索算法等改进;最后提供了PCL和Apollo的NDT实现代码实例。文章为自动驾驶定位系统开发提供了从理论到实践的完整指导。

2025-12-02 17:54:08 1277

原创 第4.4章 自动驾驶融合定位方法总结(四):Apollo激光NDT定位模块源码解读

Apollo的NDT定位模块是激光SLAM的工业级实现,涵盖了地图加载、点云预处理、NDT配准、位姿优化全流程。通过深入分析代码,我们不仅理解了NDT算法的数学原理与工程实现,还掌握了实时定位系统的优化技巧(如多分辨率地图、体素滤波、传感器融合)。对于SLAM学习者,该模块提供了从理论到实践的完整参考,同时也为工业级定位系统的开发提供了宝贵的工程经验。未来可进一步探索算法加速与多传感器融合,推动定位系统向更高精度、更强鲁棒性发展。

2025-12-02 17:44:56 48

原创 第4.1章 自动驾驶融合定位方法总结(一):吃透组合导航!搞定室外99%定位场景!

本文从组合导航的核心地位出发,讲解了其发展历程、融合方式、关键技术参数和工程开发要点。其实组合导航的开发并非遥不可及,只要掌握了设备消息配置、标定技巧,再开发好消息驱动(我的专栏第8章会带来组合导航驱动开发的实战教程),将组合导航的位姿、速度等数据准确传递给下游的激光融合、视觉融合模块,就能搭建起基础的自动驾驶定位系统。最后想对各位开发者说:理论知识只是基础,动手推导公式、编写代码、调试设备才是掌握组合导航的关键。

2025-12-02 15:28:53 459

原创 第8.4章 自动驾驶组合导航定位驱动开发实战(五):吃透组合导航核心!INS与Heading消息解析的自动驾驶定位实战

Azimuth(方位角):INS输出的车体航向角,以正北为0度,东向为90度,范围0-360度,反映的是车体的前进方向;Heading(航向角):卫导解算的天线指向角,同样以正北为0度,东向为90度,反映的是主天线指向副天线的方向。由于导航设备通常按“右前上”安装,INS的Azimuth和卫导的Heading之间会相差90度(比如INS航向角141度,Heading角231度),这是硬件安装导致的固有偏移,解析时无需修正,下游模块会根据安装标定参数处理。

2025-12-02 14:26:10 34

原创 第8.3章 自动驾驶组合导航定位驱动开发实战(四):Apollo源码IMU消息解析及比例因子实战总结

摘要: 本文深入解析自动驾驶组合导航系统中IMU消息处理的核心技术与实现方法。重点介绍了IMU在融合定位中的关键作用,详细剖析了Apollo框架中NovAtel IMU消息解析的代码实现,包括数据结构设计、比例因子转换、坐标系映射等关键技术。文章还总结了IMU数据处理中的注意事项,如时间同步、数据验证等,并强调了数学基础、编程能力对开发的重要性。通过理论分析与代码实战相结合,为开发者提供了完整的IMU消息处理解决方案。(149字)

2025-12-01 17:51:28 137

原创 第1.0章 自动驾驶融合定位方法全解析及入门进阶学习路线建议

融合定位不是“一招鲜吃遍天”,而是多种技术的“组合拳”。组合导航(GNSS/INS)GNSS就是卫星导航(比如GPS、北斗),优点是范围广、全局定位;缺点是容易被遮挡(比如高楼、隧道里没信号)。IMU(惯性测量单元)能测加速度、角速度,优点是实时性强、不依赖外界;缺点是误差会随时间累积。外参标定:得先确定GNSS和IMU之间的位置关系,否则融合出来的结果是错的。组合导航标定:像“差分系统DTU、杆臂值”这些参数,得校准好,不然定位精度会大打折扣。

2025-11-28 16:25:32 54

原创 第9.1章 以定位工程师的视角,拆解Apollo自动驾驶全模块的核心技术、算法与数学原理,

本文从定位工程师视角剖析自动驾驶五大核心模块(定位、感知、预测、规划、控制)的技术架构与协作关系。重点阐述了定位模块作为上游核心的关键作用,其厘米级精度直接影响下游模块性能。文章详细拆解了各模块的经典算法(如ICP配准、LSTM预测、MPC控制等)及C++实现依赖的第三方库(PCL、Eigen、TensorRT等),并通过算法汇总表和思维导图呈现完整技术体系。最后强调定位工程师需具备全栈视野,理解模块间的数学关联与数据流,才能实现系统级优化。

2025-11-28 15:32:15 33

原创 四元数时间导数中1/2因子的本质:从数学推导到SLAM应用

本文从数学推导和几何意义两个维度,系统阐释了四元数时间导数中1/2因子的来源。首先指出四元数表示旋转时天然包含角度减半特性,这是1/2因子的关键伏笔。随后通过严格代数推导,证明1/2因子是四元数与旋转矩阵映射关系、反对称矩阵求导和归一化条件共同作用的结果。最后通过反证法说明,若缺失1/2因子将导致数学矛盾。该因子并非人为引入,而是四元数描述旋转的内禀属性,对机器人SLAM和自动驾驶等领域的姿态估计具有重要意义。

2025-11-28 11:57:10 567

原创 第6.4.1章 机器人自动驾驶SLAM中的数学总结(四补充):四元数求导及积分公式推导(附C++代码)

本文系统介绍了四元数在机器人SLAM中的核心应用。首先指出数学与编程是SLAM领域的双引擎,强调四元数作为3D旋转表示的关键地位。接着梳理四元数知识体系,包括基础定义、核心运算、3D旋转关联、导数与积分等模块,并详细解析Eigen、PCL等库中的四元数实现。最后通过IMU+视觉姿态估计的实战项目,展示四元数从理论到代码的完整应用路径。文章突出"动手实践"的学习方法,帮助读者掌握SLAM中的数学工具。

2025-11-28 11:51:30 35

原创 第6.15章 机器人自动驾驶SLAM中的数学总结(十五):【搞懂SLAM测量模型】雅可比矩阵H与观测矩阵的核心区别及计算方法

介绍观测矩阵

2025-11-28 11:25:30 29

原创 第6.14章 机器人自动驾驶SLAM中的数学总结(十四):【矩阵代数】在SLAM中的核心应用--从数学原理到C++实战

矩阵运算 → 数据组织和变换矩阵导数 → 优化求解概率理论 → 不确定性建模李群李代数 → 优雅的位姿表示从"学数学"到"用数学"从"记公式"到"理解思想"从"怕推导"到"爱实践"行动建议:立即开始:运行本文代码,获得第一个成功体验小步快跑:每次只学习一个概念,但彻底掌握持续实践:每天30分钟代码,胜过每周突击善用工具:让AI成为你的24小时数学助教SLAM之路没有捷径,但有了正确的学习方法,每个人都能成为优秀的SLAM工程师。数学不是障碍,而是你最强大的武器。

2025-11-27 17:59:37 38

原创 第6.13章 机器人自动驾驶SLAM中的数学总结(十三):【状态估计】公式总结及在SLAM中的应用(附C++项目代码)

本文系统介绍了SLAM状态估计的核心数学知识体系与工程实践。首先指出数学与编程是机器人领域的核心能力,强调状态估计在SLAM中的关键地位。随后详细梳理了状态估计的发展历程、知识框架(包括概率理论、卡尔曼滤波、三维几何等),并解析了PCL/Eigen等第三方库中的数学实现。文章重点讲解了概率理论、线性/非线性估计等核心概念,提供公式推导与代码实现指导,最后通过EKF激光SLAM项目展示完整应用。全文旨在打通SLAM数学理论与工程实践的"最后一公里",为初学者提供系统性学习路径。

2025-11-26 15:25:10 42

原创 第6.12章 机器人自动驾驶SLAM中的数学总结(十二):【概率统计】从数学原理到C++实战

马氏距离(dMd_MdM​:“考虑数据分布的距离”,用于衡量“一个点与一个分布的偏离程度”,SLAM中用于离群值检测;公式:对于点xxx和分布NμΣNμΣdMx−μTΣ−1x−μdM​x−μTΣ−1x−μ​;与欧氏距离的区别欧氏距离:假设所有变量的单位相同、方差相同(如x和y的单位都是m,方差都是0.1),直接计算“点到中心的直线距离”;

2025-11-26 14:51:21 44

原创 机器人自动驾驶SLAM数学基础:非线性优化从原理到自动驾驶实战

本文探讨了非线性优化在自动驾驶中的核心作用及其应用。文章首先分析了自动驾驶对非线性优化的依赖,指出其在处理传感器噪声和状态估计中的关键价值。随后详细讲解了状态估计的核心概念,包括先验、后验概率和最大似然估计,并通过C++代码示例验证概率关系。文章还系统比较了三种主流非线性优化方法(最速下降法、高斯-牛顿法和LM法)的优缺点及适用场景。最后介绍了非线性优化在激光雷达点云配准等自动驾驶具体场景中的应用,展示了理论到实践的完整链路。全文以通俗语言解析了自动驾驶中的数学优化问题,为开发者提供了从基础到进阶的学习路径

2025-11-25 17:33:01 202

原创 机器人自动驾驶SLAM数学基础:四元数——从公式到自动驾驶实战(附C++代码)

本文针对自动驾驶工程师深入讲解四元数的核心概念与工程应用。四元数作为3D旋转的高效表示方法,避免了欧拉角的万向锁问题,计算量小于旋转矩阵。文章从四元数的数学表达、单位四元数特性入手,重点解析四元数乘法和求导运算,并给出可直接用于ESKF姿态更新的C++实现代码。特别针对自动驾驶中的IMU角速度积分场景,详细推导了四元数时间导数公式,提供完整的工程解决方案。通过代码示例演示了四元数在姿态更新中的实际应用,包括欧拉积分和归一化处理等关键技术点。

2025-11-25 17:05:45 58

原创 机器人自动驾驶SLAM数学基础:欧拉角——让自动驾驶“看懂“方向的数学密码

本文系统介绍了欧拉角在自动驾驶领域的核心应用。通过车辆坐标系下的ZYX欧拉角(yaw-pitch-roll)分解三维旋转,直观描述车辆的转向、俯仰和侧倾动作。重点解析了ZYX旋转矩阵的右乘顺序原理及其物理意义,并提供了基于Eigen库的C++实现方案,将欧拉角转换为旋转矩阵。文章还结合实际驾驶场景(如转弯、上坡等)说明欧拉角的工程优势,强调其在自动驾驶状态监控和人机交互中的重要作用。最后指出欧拉角虽存在万向锁等问题,但在特定场景下仍是描述车辆姿态的高效工具。

2025-11-25 16:27:46 578

原创 机器人自动驾驶SLAM数学基础:李代数求导与扰动模型——从公式推导到自动驾驶代码落地

本文系统介绍了李代数求导在自动驾驶中的核心应用。主要内容包括:1)李代数求导的必要性,解释了为什么旋转矩阵不能直接求导;2)扰动模型的核心思路,通过微小扰动简化求导过程;3)详细推导了SO(3)和SE(3)下的李代数求导公式;4)给出了C++实现代码;5)探讨了在ESKF和SLAM中的实际应用。文章强调,掌握李代数求导是从"调参工程师"进阶为算法设计核心的关键,特别是在自动驾驶定位、建图和路径规划等场景中,该技术对位姿优化至关重要。

2025-11-25 16:16:12 31

原创 机器人自动驾驶SLAM数学基础:从旋转矩阵到向量,搞定车辆定位的 “空间密码”

本文介绍了自动驾驶SLAM技术中描述车辆旋转运动的两种数学工具:旋转矩阵和旋转向量。旋转矩阵通过正交矩阵实现坐标系间的坐标转换,需满足正交性和行列式为1的特性;旋转向量则采用轴角模型提供更紧凑的表示。文章从坐标系约定、数学推导到Eigen库代码实现,完整展示了如何用这些数学工具解决自动驾驶中的姿态描述问题,包括旋转矩阵的构建验证和坐标转换等实际应用场景。

2025-11-25 15:45:07 25

原创 第6.11章 机器人自动驾驶SLAM中的数学总结:手撕雅可比矩阵+SLAM代码实战,从原理到项目全攻略

本文系统介绍了雅可比矩阵在SLAM领域的核心应用。首先指出数学与编程是SLAM的两大核心竞争力,雅可比矩阵作为连接微积分与优化理论的关键纽带,在BA优化、ICP配准等算法中具有重要作用。文章详细梳理了雅可比矩阵的定义、几何意义及必备知识体系,并解析其在Eigen、PCL、Ceres等主流库中的应用要点。最后通过原理推导与代码实现相结合的方式,帮助读者掌握雅可比矩阵从理论到实践的完整链路,解决"懂数学但不会用"的痛点。

2025-11-25 15:02:01 60

原创 第6.10章 机器人自动驾驶SLAM中的数学总结:协方差矩阵推导及在SLAM中的应用(附C++实例代码)

本文深入探讨协方差矩阵在SLAM系统中的核心作用与应用。协方差矩阵作为概率统计与线性代数的交叉核心,在SLAM中扮演"误差指南针"的关键角色,贯穿定位、优化、融合全流程。文章系统梳理了协方差矩阵的理论基础、SLAM应用场景及工程实现,包括:传感器误差建模、卡尔曼滤波状态更新、位姿图优化中的权重分配等核心应用。通过激光SLAM多传感器融合的完整C++实战项目,展示了协方差矩阵如何从数学理论转化为工程实践,帮助开发者攻克"懂数学不会用"的行业痛点。本文为SLAM开发者提供

2025-11-25 11:56:31 429

原创 第6.9章 机器人自动驾驶SLAM中的数学:SVD分解求位姿公式推导(附C++实例代码)

对于任意m×nm \times nm×n矩阵A\mathbf{A}AAUΣVTAUΣVTU\mathbf{U}Um×mm \times mm×m的正交矩阵(左奇异矩阵),列向量为AATAAT的特征向量;ΣΣm×nm \times nm×n的对角矩阵(奇异值矩阵),对角元素σ1≥σ2≥≥σk≥0σ1​≥σ2​≥...≥σk​≥0kmin⁡mnkminmn)为奇异值;

2025-11-25 11:27:57 1014

原创 第6.8章 机器人自动驾驶SLAM中的数学:从向量到基础矩阵SLAM最全总结(附C++实例代码)

本文系统介绍了SLAM技术中所需的数学知识体系与C++实现方法。重点讲解了向量、矩阵、几何变换等核心数学模块在SLAM中的应用,结合Eigen、PCL等第三方库提供代码实例。文章通过结构化梳理数学知识点,帮助读者打通"理论-代码"的转化路径,并针对初学者提供了学习建议。最后通过SLAM位姿估计的完整项目,展示了数学理论在实际工程中的具体应用。

2025-11-24 17:54:28 330

原创 第2.9章 机器人C++学习实战总结(十):Lambda+std::function+std::bind+仿函数实战指南

本文系统介绍了C++可调用对象模块在SLAM开发中的关键作用。文章首先阐述了Lambda、std::function、std::bind和仿函数的核心区别与协同关系,指出这些工具是连接算法与工程实现的重要桥梁。随后详细分析了各技术的语法特性、适用场景,并通过SLAM实例展示了点云处理、回调实现等典型应用。最后强调该模块是实现模块化解耦、算法动态切换等高级功能的基础,是C++从入门到工程化的分水岭。全文以SLAM开发为背景,提供了完整的知识框架和实战指导。

2025-11-21 16:13:10 40

原创 第2.7章 机器人C++学习实战总结(八):吃透C++头文件-SLAM/自动驾驶编程的“基建王者”,从入门到项目实战全攻略

本文系统介绍了C++头文件在SLAM编程中的核心作用与实践方法。主要内容包括:1)头文件的基础知识与保护机制对比(#pragma once与#ifndef);2)头文件的发展历程与核心知识体系;3)SLAM常用第三方库的头文件速查表;4)头文件在SLAM项目中的工程化应用,包括模块拆分、声明规范与协作逻辑;5)通过SLAM前端特征提取案例演示头文件的实战应用。文章强调头文件是C++工程化的"基石",规范使用可提升代码可读性、可维护性和扩展性,是SLAM开发者必须掌握的"基建级&

2025-11-21 14:44:52 39

原创 第2.6章 机器人C++学习实战总结(七):吃透C++预处理命令-从SLAM工程配置到自动驾驶编译优化

本文系统介绍了C++预处理命令在SLAM/自动驾驶领域的核心应用。主要内容包括:1) 预处理命令在C++编译流程中的基石地位及其工程价值;2) 从C到C++20的预处理命令演进历程与知识图谱;3) 文件包含、宏定义、条件编译、调试辅助四大类命令的深度解析;4) SLAM项目实战中的跨平台适配与调试技巧。预处理命令是实现代码复用、跨平台兼容和高效调试的关键工具,掌握其应用能显著提升SLAM/自动驾驶项目的开发效率与工程可靠性。

2025-11-21 11:58:17 42

原创 第2.9章 深度解析 `#pragma once`:C++ 头文件重复包含的有效防线

本文回顾了C++知识体系中#pragma once预处理指令的定位与作用,详细对比了其与传统头文件保护符的差异。文章通过SLAM和自动驾驶项目的实际代码示例,展示了#pragma once如何有效防止头文件重复包含,避免编译错误。同时介绍了该指令在机器人SLAM项目中的完整应用场景,包括项目结构设计、头文件实现及模块间协作,为C++开发者提供了头文件管理的实用指导。

2025-11-21 09:28:00 31

原创 第1.5章 深入剖析 #pragma pack(pop):C++ 内存对齐控制的关键指令

本文系统介绍了C++内存对齐指令#pragma pack(pop)及其应用。文章首先定位该指令在C++知识体系中的位置,梳理其发展历程和相关知识,包括push/pop操作和不同对齐设置。重点展示了该指令在SLAM和自动驾驶领域的实际应用,通过传感器数据结构和地图点结构体的代码示例,说明如何优化内存布局。最后提供了完整的机器人SLAM项目代码,演示了内存对齐设置与恢复的具体实现。文章强调C++学习要注重实践,合理利用内存对齐可以提升程序性能,特别是在处理大量数据结构时效果显著。

2025-11-21 09:23:37 22

经典激光SLAM框架-LOAM论文

经典激光SLAM框架-LOAM论文

2025-10-28

FAST-LIO论文(机器人自动驾驶领域激光slam框架)

FAST-LIO论文(机器人自动驾驶领域激光slam框架)

2025-10-28

pcl源码point-types.h

pcl源码point-types.h

2025-01-13

机器人及自动驾驶SLAM定位知识体系构建思维导图

详细总结了自动驾驶SLAM定位所需要的知识

2025-01-03

计算机视觉中的多视图几何(中文版)

计算机视觉中的多视图几何(中文版),很适合搞slam学习.

2018-05-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除