分治算法寻找第K小数

本文介绍了如何使用分治算法来解决找到数组中第K小元素的问题。首先讨论了经典问题"Selection",并指出直接排序的低效性。接着,详细解释了分治策略,通过选取参考数将数组分为小于、等于和大于三部分,并递归地处理子数组。文章还提到了LeetCode上的378. Kth Smallest Element in a Sorted Matrix问题,这是一个在有序矩阵中找第K小元素的变体,利用了矩阵的有序特性结合二分查找来优化解决方案,采用了非递归的方法实现。
摘要由CSDN通过智能技术生成

经典问题

有一道经典的算法题”Selection”

SELECTION
Input: A list of numbers S; an integer k
Output: The kth smallest element of S
For instance, if k = 1, the minimum of S is sought, whereas if k = |S|/2, it is the median.

这道题有很多解法,最简单的就是先对所有数排序。但是显然当数据较大时,这种方法效率不高。使用分治算法就可以在此基础上提高效率,因为只需对一部分而不是全部数据进行排序。
大致思路如下:每一次,先从数组中选出任意一个参考数pivot。选取的方法几乎不会影响效率,一般来说随机选取即可。选取好pivot后,对数组进行遍历,将所有数据分为三组,即小于,等于,大于pivot的三组。例如:
例子

若选取5作为参考数,则分成的三组为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值