线段树基本介绍

线段树

本来想自己YY写一发的,这样理解的也更深一些,但是不知道该从哪儿下手,后来又看了一下别人写的,

自觉惭愧,想着自己应该写不到这么好吧,所以我就不误人子弟了。转载自

http://blog.csdn.net/metalseed/article/details/8039326 

一:线段树基本概念

1:概述

线段树,类似区间树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)!

性质:父亲的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的四倍


2:基本操作(demo用的是查询区间最小值)

线段树的主要操作有:

(1):线段树的构造 void build(int node, int begin, int end);

主要思想是递归构造,如果当前节点记录的区间只有一个值,则直接赋值,否则递归构造左右子树,最后回溯的时候给当前节点赋值

  1. #include <iostream>  
  2. using namespace std;  
  3.   
  4. const int maxind = 256;  
  5. int segTree[maxind * 4 + 10];  
  6. int array[maxind];   
  7. /* 构造函数,得到线段树 */  
  8. void build(int node, int begin, int end)    
  9. {    
  10.     if (begin == end)    
  11.         segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */  
  12.     else    
  13.     {     
  14.         /* 递归构造左右子树 */   
  15.         build(2*node, begin, (begin+end)/2);    
  16.         build(2*node+1, (begin+end)/2+1, end);   
  17.            
  18.         /* 回溯时得到当前node节点的线段信息 */    
  19.         if (segTree[2 * node] <= segTree[2 * node + 1])    
  20.             segTree[node] = segTree[2 * node];    
  21.         else    
  22.             segTree[node] = segTree[2 * node + 1];    
  23.     }    
  24. }  
  25.   
  26. int main()  
  27. {  
  28.     array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;  
  29.     build(1, 0, 5);  
  30.     for(int i = 1; i<=20; ++i)  
  31.      cout<< "seg"<< i << "=" <<segTree[i] <<endl;  
  32.     return 0;  
  33. }   
#include <iostream>
using namespace std;

const int maxind = 256;
int segTree[maxind * 4 + 10];
int array[maxind]; 
/* 构造函数,得到线段树 */
void build(int node, int begin, int end)  
{  
    if (begin == end)  
        segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */
    else  
    {   
    	/* 递归构造左右子树 */ 
        build(2*node, begin, (begin+end)/2);  
        build(2*node+1, (begin+end)/2+1, end); 
		 
		/* 回溯时得到当前node节点的线段信息 */  
	    if (segTree[2 * node] <= segTree[2 * node + 1])  
	        segTree[node] = segTree[2 * node];  
	    else  
	        segTree[node] = segTree[2 * node + 1];  
    }  
}

int main()
{
	array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;
	build(1, 0, 5);
	for(int i = 1; i<=20; ++i)
	 cout<< "seg"<< i << "=" <<segTree[i] <<endl;
	return 0;
} 
 此build构造成的树如图:

(2):区间查询int query(int node, int begin, int end, int left, int right);

(其中node为当前查询节点,begin,end为当前节点存储的区间,left,right为此次query所要查询的区间)

主要思想是把所要查询的区间[a,b]划分为线段树上的节点,然后将这些节点代表的区间合并起来得到所需信息

比如前面一个图中所示的树,如果询问区间是[0,2],或者询问的区间是[3,3],不难直接找到对应的节点回答这一问题。但并不是所有的提问都这么容易回答,比如[0,3],就没有哪一个节点记录了这个区间的最小值。当然,解决方法也不难找到:把[0,2][3,3]两个区间(它们在整数意义上是相连的两个区间)的最小值合并起来,也就是求这两个最小值的最小值,就能求出[0,3]范围的最小值。同理,对于其他询问的区间,也都可以找到若干个相连的区间,合并后可以得到询问的区间。

  1. int query(int node, int begin, int end, int left, int right)    
  2. {   
  3.     int p1, p2;    
  4.     
  5.     /*  查询区间和要求的区间没有交集  */  
  6.     if (left > end || right < begin)    
  7.         return -1;    
  8.     
  9.     /*  if the current interval is included in  */    
  10.     /*  the query interval return segTree[node]  */  
  11.     if (begin >= left && end <= right)    
  12.         return segTree[node];    
  13.     
  14.     /*  compute the minimum position in the  */  
  15.     /*  left and right part of the interval  */   
  16.     p1 = query(2 * node, begin, (begin + end) / 2, left, right);   
  17.     p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);    
  18.     
  19.     /*  return the expect value  */   
  20.     if (p1 == -1)    
  21.         return p2;    
  22.     if (p2 == -1)    
  23.         return p1;    
  24.     if (p1 <= p2)    
  25.         return  p1;    
  26.     return  p2;      
  27. }   
int query(int node, int begin, int end, int left, int right)  
{ 
    int p1, p2;  
  
    /*  查询区间和要求的区间没有交集  */
    if (left > end || right < begin)  
        return -1;  
  
    /*  if the current interval is included in  */  
    /*  the query interval return segTree[node]  */
    if (begin >= left && end <= right)  
        return segTree[node];  
  
    /*  compute the minimum position in the  */
    /*  left and right part of the interval  */ 
    p1 = query(2 * node, begin, (begin + end) / 2, left, right); 
    p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);  
  
    /*  return the expect value  */ 
    if (p1 == -1)  
        return p2;  
    if (p2 == -1)  
        return p1;  
    if (p1 <= p2)  
        return  p1;  
    return  p2;    
} 

可见,这样的过程一定选出了尽量少的区间,它们相连后正好涵盖了整个[left,right],没有重复也没有遗漏。同时,考虑到线段树上每层的节点最多会被选取2个,一共选取的节点数也是O(log n)的,因此查询的时间复杂度也是O(log n)。

线段树并不适合所有区间查询情况,它的使用条件是“相邻的区间的信息可以被合并成两个区间的并区间的信息”。即问题是可以被分解解决的。



(3):区间或节点的更新 及 线段树的动态维护update (这是线段树核心价值所在,节点中的标记域可以解决N多种问题)

动态维护需要用到标记域,延迟标记等。

a:单节点更新

  1. void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/    
  2. {    
  3.     
  4.     if( begin == end )    
  5.     {    
  6.         segTree[node] += add;    
  7.         return ;    
  8.     }    
  9.     int m = ( left + right ) >> 1;    
  10.     if(ind <= m)    
  11.         Updata(node * 2,left, m, ind, add);    
  12.     else    
  13.         Updata(node * 2 + 1, m + 1, right, ind, add);    
  14.     /*回溯更新父节点*/    
  15.     segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);     
  16.          
  17. }   
void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/  
{  
  
    if( begin == end )  
    {  
        segTree[node] += add;  
        return ;  
    }  
    int m = ( left + right ) >> 1;  
    if(ind <= m)  
        Updata(node * 2,left, m, ind, add);  
    else  
        Updata(node * 2 + 1, m + 1, right, ind, add);  
    /*回溯更新父节点*/  
    segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);   
       
} 

b:区间更新(线段树中最有用的)

需要用到延迟标记,每个结点新增加一个标记,记录这个结点是否被进行了某种修改操作(这种修改操作会影响其子结点)。对于任意区间的修改,我们先按照查询的方式将其划分成线段树中的结点,然后修改这些结点的信息,并给这些结点标上代表这种修改操作的标记。在修改和查询的时候,如果我们到了一个结点p,并且决定考虑其子结点,那么我们就要看看结点p有没有标记,如果有,就要按照标记修改其子结点的信息,并且给子结点都标上相同的标记,同时消掉p的标记。(优点在于,不用将区间内的所有值都暴力更新,大大提高效率,因此区间更新是最优用的操作)

void Change来自dongxicheng.org

  1. void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/  
  2.    
  3. {  
  4.    
  5.   if (a <= p->Left && p->Right <= b)  
  6.    
  7.   /* 如果当前结点的区间包含在修改区间内*/  
  8.    
  9.   {  
  10.    
  11.      ...... /* 修改当前结点的信息,并标上标记*/  
  12.    
  13.      return;  
  14.    
  15.   }  
  16.    
  17.   Push_Down(p); /* 把当前结点的标记向下传递*/  
  18.    
  19.   int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点 
  20.   
  21.   if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/  
  22.    
  23.   if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/  
  24.    
  25.   Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/  
  26.    
  27. }  
void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/
 
{
 
  if (a <= p->Left && p->Right <= b)
 
  /* 如果当前结点的区间包含在修改区间内*/
 
  {
 
     ...... /* 修改当前结点的信息,并标上标记*/
 
     return;
 
  }
 
  Push_Down(p); /* 把当前结点的标记向下传递*/
 
  int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点
 
  if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/
 
  if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/
 
  Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/
 
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值