转载自http://blog.chinaunix.net/uid-24922718-id-4848418.html
有这么一类问题,需要在给的一组数据中找到不大于某一个上限的“最优连续子序列”
于是就有了这样一种方法,找这个子序列的过程很像毛毛虫爬行方式比较流行的叫法是“尺取法”。
Poj3061
给长度为n的数组和一个整数m,求总和不小于m的连续子序列的最小长度
输入
n = 10,m = 15
5 1 3 5 10 7 4 9 2 8
输出
2
那么我们先用sum存当前这个子序列的和,从左边第一个数来存,直到这个子序列的和大于等于m为止,再记录下当前长度。
其实相当于当不满足条件就入队,然后得到队列长度,再将队首元素出队,再进行下一次的入队,直到满足条件再次出队,并且将这一次的长度与历史最短长度进行取舍,最后扫到最后的元素却无法再满足入队条件的时候就结束,此时用O(n)的时间就可以得到答案。
如下,我把样例用毛毛虫爬一遍,红色的是当前“毛毛虫着地”也就是刚好满足题意的子序列的地方:
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
5 1 3 5 10 7 4 9 2 8
祖传代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <fstream>
#include <algorithm>
using namespace std;
int a[200000];
int main()
{
// freopen("in.txt","r",stdin);
ios::sync_with_stdio(false);
cin.tie(false);
int n,max,sum,T;
while(cin>>T)
{
while(T--)
{
cin>>n>>max;
for(int i = 0 ; i < n ; i++)
cin>>a[i];
int i = 0,j = 0,sum = 0,ans = n+1;
while(1)
{
while(j < n && sum <= max)
sum += a[j++];
if(sum < max) break;
ans = min(j-i,ans);
sum -= a[i++];
}
if(ans > n)
ans = 0;
printf("%d\n",ans);
}
}
return 0;
}