Automatic 3D Detection and Segmentation of Head and Neck Cancer from MRI Data.

Automatic 3D Detection and Segmentation of Head and Neck Cancer from MRI Data
会议论文
(更多的是传统方法,并不是深度学习方法,并且是18年的,对我个人来说参考意义不大。)

Abstract

提出了一种从磁共振成像(MRI)图像中自动分割头颈部三维肿瘤的新算法。该算法对MRI数据切片进行预处理,以提高图像质量,减少伪影。在切片之间进行强度标准化处理,然后对中心切片进行肿瘤区域分割,得到正确的强度范围和肿瘤区域的粗略位置。采用傅立叶插值方法生成各向同性的三维磁共振成像体图。一种新的基于位置约束的3D水平集方法将肿瘤从插值的MRI体积中分割出来。在真实的MRI数据上对该算法进行了测试。实验结果表明,与以往的2D和3D分割方法相比,新的3D肿瘤体积提取算法具有更好的dice 分数和F-measure。

Keywords

磁共振成像 头颈癌 傅里叶插值 模糊聚类 3D水平集方法

Introduction

根据世界卫生组织[1]的数据,2015年全球约有880万人死于癌症。放射治疗和手术一起提供了根治性治疗的主要选择。放射治疗计划是一个复杂而漫长的过程,需要对复杂的癌症区域进行详细的界定。这个区域被称为总肿瘤体积(GTV)。该区域的定义是准确和有效的放射治疗计划的基础。自动勾画方法的发展可以减少人工勾画肿瘤的内部和内部变异性,为临床肿瘤学家减轻工作量和改善放射治疗提供客观可靠的帮助[2]。
图1(a)显示了具有舌根肿瘤的T1加权钆增强的头颈部MR图像。已知肿瘤区域具有模糊边界,并且与邻近组织没有显著差异。此外,如图1(b)所示,MRI数据的伪影,例如不均匀照明,是显而易见的。所有这些都使得自动肿瘤分割成为一项非常具有挑战性的任务。
图1
已有多种算法被提出用于头颈部癌症分割,例如基于图谱的技术[3]、基于训练的方法[4]和变形模型[5,6]。然而,这些方法并不能有效地解决自动分割的难题。[5]中的工作依赖于手动初始化,这既不是自动的,也不是客观的,而在[3]基于图谱的方法和[4]基于训练的方法依赖于图谱或大量标记的数据。另外,回顾医学图像的深度学习研究[7],目前还没有一种有效的深度学习方法应用于头颈部肿瘤的分割,这可能表明目前流行的深度学习方法仍然不能很好地解决我们面临的挑战。文献[6]中的工作将3D水平集分割应用于对比度差异较大的CT数据中的骨骼分割。我们以前的工作[8]提出了一种自动的2D肿瘤分割方法,并在真实的MRI切片上进行了测试。在[9]中,3D喉咙检测是通过对分割的2D MRI切片进行插值而获得的。本文提出了一种新的3D水平集方法(LSM),从一系列MRI切片中自动提取3D肿瘤模型(对比度差)。
本文提出了一种新的从T1加权增强MRI数据中分割三维肿瘤体积的全自动算法。这项工作的挑战包括分割边界模糊、形状不规则、强度不均匀的肿瘤区域,并避开相邻的解剖结构。确定肿瘤区域的强度范围是至关重要的;此外,3D LSM的初始化立方体的大小也会影响最终结果。该算法在格拉斯哥比特森西部苏格兰癌症中心的真实MRI数据上得到了验证。
论文的其余部分组织如下。第二节介绍了新的自动三维肿瘤检测、分割和可视化算法。第三节展示了在真实MRI数据集上的实验结果。最后一部分对全文进行了总结。

AUTOMATIC HEAD AND NECK TUMOUR 3D SEGMENTATION(头颈部肿瘤的自动三维分割)

提出的头部和颈部肿瘤分割过程如图2所示。包括三个部分:a)图像预处理,b)中心切片上的肿瘤检测,c)基于三维位置约束的最小二乘法(3D Location-Constraint LSM)的肿瘤分割。
图2

Image Pre-processing

本文采用多种预处理技术对MRI数据进行伪影去除和图像增强。使用形态学开运算和大数运算来最小化背景噪声[10],这可以在保留图像边缘的同时去除较小的噪声区域。通过保持背景亮度的对比度增强技术来增强图像[11]。
在MRI数据中有两种类型的强度变化。第一种类型是单层的强度不均匀性(也称为偏置场)[12]。在本文中,基于[13]中的技术对不均匀性(偏差)进行了估计和校正。第二种类型的强度变化是切片之间的;当某一测量的强度不能与所有切片上的特定组织类别[12]相关联时,就会发生这种情况,这一问题在本研究中通过切片间的强度标准化来解决[10]。
由于本工作将采用基于灰度的三维水平集方法进行肿瘤提取,因此必须对其进行灰度标准化处理,以获得所有切片上一致的肿瘤区域的灰度范围。图3展示了强度标准化的一个示例。可以看出,经过强度标准化后,切片A的强度分布更接近于参考片。因此,可以确定通过所有切片的肿瘤区域的均匀强度范围。
图3
图3.强度标准化示例:(A)用作参考的中心切片,(B)强度标准化前的切片A,©强度标准化后的切片A,(D)中心切片的直方图,(E)标准化前的切片A的直方图,(F)标准化后的切片A的直方图。
本文使用的MRI数据具有各向异性体素,而3DLSM只适用于各向同性体素。原始体素通过傅里叶插值转换为同位素体素,这是在[9]中引入的。使用实切片和插值切片在3D中重建用于LSM分割的体积。

2D Tumour Detection on Central Slice(中心切片上的二维肿瘤检测)

要从MRI数据中提取肿瘤,首要任务是检测肿瘤区域的大致位置。在本工作中,采用中心切片进行二维肿瘤检测。在中心切片上检测到的2D肿瘤区域将作为下一节中3D肿瘤体积分割的指南
在中心切片上检测肿瘤的步骤也如图2所示。喉咙检测采用两条模糊规则[8]。然后,改进的模糊c-均值(MFCM)[14]利用像素的强度和空间信息将它们组织成五个簇。基于预处理的头颈部MRI切片由四种主要组织类型(脂肪组织、癌组织、正常组织和正常肌肉组织)和背景组成的假设,聚类为五类。根据临床医生的先验生物医学知识,头颈部癌区域(肿瘤和癌性淋巴结)通常位于喉部附近,在所有组织中通常具有第一或第二明亮的强度,从这些簇中提取感兴趣的区域并进一步细化。结合原始图像的边缘信息,对大区域进行分割。喉咙周围的区域将得到保护。如果保存区域中存在对称区域,则会检测到距离图像中心最远的一对对称区域并将其移除,因为它们很可能是唾液腺。然后对进一步分离的区域进行分水岭变换[15],然后去除小区域。从而检测出一个粗略的肿瘤区域,并将该区域作为2D水平集方法的初始轮廓,在中心切片上得到精确的肿瘤区域。
在这项工作中,基于局部区域的水平集方法[14]用于中心切片上的2D肿瘤分割,其演化方程如下:
公式1
其中,(1)右侧的第一项是驱动水平集演化到期望边界的外力(即映像力),第二项是内力,项()xdivxϕϕ∇∇
是水平集函数φ的曲率,它保持φ平滑。这里,外力给出为[16]:
公式2
其中μinx,Aμin是演化曲线(水平集的零集,即φ=0)上每个点的内部局部区域的平均值和面积,μoutx,Aμout是外部的平均值和面积。
基于(1)和(2),当前景和背景具有最大分离的平均强度时,水平集进化将停止[16]。
如图4(a)-(e)所示,显示了二维肿瘤区域检测和分割的工作流程。最后,通过基于局部区域的水平集方法得到二维肿瘤区域(称为Seg2D)[5,17]。
图4
图4.内插MRI数据集中心切片上的2D肿瘤检测和分割。(a)中心切片和检测到的咽喉区(红色区域)。(b)包含肿瘤区域的选定簇。©喉部周围区域通过分水岭变换进一步分隔,最大的天蓝色区域是感兴趣区域,即肿瘤的粗略位置。(d)水平集演化的初始区域,该区域被侵蚀ROI(©中最大的天蓝色区域)。(e)用2D水平集方法分割肿瘤区域。

3D Tumour Segmentation

水平集进化的结果依赖于初始值的初始化,包括初始值的位置和大小。在本工作中,位置是基于Seg2D设置的,所提出的工作以Seg2D的中心作为水平位置,并且由于Seg2D位于中心切片上,所以垂直位置是整个体积深度的一半。采用对称棱锥体作为初始体积。金字塔的最大长度和宽度为MRI体积轴向尺寸的5%,MRI体积的顶部和底部的长度和宽度均为1。这些选择的值保证了初始金字塔距离肿瘤区域不远。图5(a)显示了初始金字塔的一个例子。
图5
图5.使用3D水平集方法的肿瘤分割:(a)初始立方体,(b)©(d)3D演化过程,(d)分割的肿瘤。
在这项工作中,基于[6]对用于3D水平集进化的速度函数F进行了修改:
公式3
其中(3)右侧的第一项是外力(即图像力),I是图像数据,μ是预定的目标对象灰度下界,在本工作中,将SEG2D的下界作为μ。第二项是内力,div( g∇φ)是由梯度特征图g[6]加权的曲率流。此水平集函数仅对强度敏感,可能会产生许多误报。因此,在本工作中,速度函数被修改如下:
公式4
其中ωL(I)是图像力的位置约束,其去除远离喉咙和初始体积的区域的图像力,但保持Seg2D区域的权重。去加权基于两个高斯分布:
公式五六
公式(5)显示了远离初始体积中心(即Seg2D的中心)的区域的减重规则。公式(6)显示了远离喉部区域中心的区域的减重规则。这两条规则对于MRI体积的每一层都是相同的。[xp,yp]是像素P的坐标,[xs, ys]是Seg2D的中心坐标,[xt, yt]是喉部区域中心的坐标。σs和σt是根据Seg2D半径和喉部区域自动自适应设置的。基于这两种分布,并根据保持Seg2D区域权重的原则,给出了ωL(I):
公式7
其中norm表示将fs和ft的乘积归一化,Seg2D是一个二元映射,也适合范围[0,1]。这样,远离Seg2D和喉部区域的像素的图像力将显著减小,而Seg2D的权重将不受影响。通过引入(7)到(4),得到了位置约束水平集函数。基于水平集的(4)和初始化(图5(a)),可以分割3D肿瘤体积,如图5所示。
如图5(b)-(d)所示,通过水平集进化,初始金字塔在垂直和水平两个平面上均发生膨胀或侵蚀,最终在肿瘤表面收敛。

Experimental Results

新算法在Matlab中实现,运行在16G RAM、3.2 GHz Intel®Core™i7-8700 CPU的PC上。在苏格兰西部癌症中心Beatson的真实MRI数据集上进行了实验,以测试新算法的性能。测试数据包括来自10名患者的112张T1加权钆增强磁共振图像,经插值后,图像总数(实数和插值数)超过1000。这一部分将展示所提出的算法在真实数据上的一些结果,并与2D加插值算法[8]和其他3D算法[18]进行一些定量研究。
从两种方法(提出的方法和[8])获得的结果之间的比较如图6所示。每行显示一个MRI数据集上的结果,每条线的左侧部分((a)(g)(m))是来自所提出算法的3D体积,右侧部分((f)(l)(r))来自2D方法[8]。在每行的中间是所提出的算法,2D方法和金标准之间的2D轮廓的比较。根据Beatson West of Scotland癌症中心的临床医生,金标准是2D轴向切片上的共识肿瘤轮廓。从2D轮廓比较可以看出,与金标准相比,所提出的算法具有相似的分割。此外,图6(a)(g)(m)中3D肿瘤体积的可视化表明,所提出的3D方法可以产生具有光滑表面和一致结构的肿瘤体积。另一方面,通过2D方法[8]提取的体积具有尖锐的边缘(图6(f)(l)(r)),并且如果2D分割中存在不准确性(图6(q)),3D卷的结构将不一致(图6(r))。
图6
图6.从真实数据分割的3D肿瘤体积,每行使用相同的数据集。(a)(g)(m)是通过所提出的算法获得的体积;(f)(l)®是通过2D方法获得的体积;(b)©(d)(e)、(h)(i)(j)(k)和(n)(o)§(q)是在单独的轴向切片上的二维等高线。黄色轮廓来自黄金标准(共识手册轮廓),红色轮廓来自所提出的算法,蓝色轮廓来自2D方法[8]。
定量测量包括Dice相似系数得分(DSC)、假阳性(FP)、假阴性(FN)和F-measure。对提出的方法、2D方法[8]和基于阈值的3D水平集方法[18]的测量结果进行了比较。
DSC用于测量两个样本A和B之间的相似性;它可以按给定的[19]计算:
公式8
在(8)中,符号∩表示等高线A和等高线B之间的相交区域。
F-measure给出如下形式:
公式9
根据(8)和(9),绘制DSC和F-measure条形图:
图7
图7.2D方法与黄金标准(共识手册大纲)之间的DSC和F-measure的比较,以及提出的3D方法与黄金标准之间的比较。X轴表示数据集1到10。
从图7中可以看出,在上述数据集的一半中,所提出的方法表现更好。所有10个数据集上2D方法的平均DSC为0.65,所提出的3D方法为0.70。2D+I的平均F-measure为0.70,并且所提出的3D方法的平均F-measure为0.74。所提出的方法,2D方法[8]和3DLSM[18]的定量研究比较总结如下表:
表1
表1列出了根据黄金标准(手册共识大纲)对三种方法进行的测量。DSCs、F-measure、FP和FN均表明该方法具有较好的性能。
图8显示了提出的3D方法和2D方法的时间成本。可以看出,所提出的方法需要更少的处理时间。此外,随着输入切片数的增加,2D方法的时间消耗呈线性增加,而所提出的方法的时间开销则随着速度的降低而增加。当输入数据量较大时,时间消耗将是极其重要的。
图8
图8.2D和提出的3D方法的时间消耗,x轴是输入切片的数量,y轴是以秒为单位的时间成本。
2D方法的缺点是对每个切片进行检测和分割,耗时长,任何检测失败都会影响三维重建效果。3D方法只在中心切片上检测一次,得到大致的起始点,然后以强度为指导分割三维体,从而保证了提取的三维结构的一致性。此外,基于位置约束的水平集方法有效地降低了三维水平集方法在头颈部肿瘤提取中的假阳性率,取得了较好的效果。

Conclusion

对于T1头颈部MRI数据集上的肿瘤的自动3D分割存在挑战。二维分割+重建的方法伪影严重,耗时长,产生的三维体不光滑。现有的3D水平集方法可能会由于切片之间的强度差异和肿瘤边界模糊而失败。本文提出了一种新的基于T1 MRI数据集的三维肿瘤自动分割算法,该算法首先以中心切片为参考,对切片间的灰度进行标准化,然后对中心切片的癌区域进行分割,从而确定肿瘤区域的位置和强度范围,并采用位置约束水平集方法,成功地提高了分割性能。
实验结果表明,该方法在真实的MRI数据集上效果良好。实验结果表明,与以往的二维分割方法相比,该方法具有更低的复杂度代价。对实际数据的实验结果表明,该算法具有较好的分割效果,并能得到光滑的表面和一致的结构。
未来,该方法将在更多的MRI数据集上进行测试。对比度增强方法和3D水平集函数的改进,以及肿瘤起止位置检测的发展也是未来研究的目标。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
TLS(Terrestrial Laser Scanning)和MLS(Mobile Laser Scanning)是两种常用的激光扫描技术,可以获取三维点云数据。个体树木的分割是激光扫描数据处理中的一个重要任务,其目的是将点云数据中的个体树木从环境中分离出来。 个体树木的分割通常包括以下步骤: 1. 数据预处理:首先需要对激光扫描数据进行预处理,包括滤波、去噪等。这样可以提高后续处理的效果。 2. 地面提取:在分割个体树木之前,需要先将地面点从点云数据中分离出来。可以使用地面滤波算法,如基于地面模型的分隔方法,以获得地面点云。 3. 生长区域划分:利用区域生长算法,根据点云数据的属性特征,将相邻的点分为不同的区域。根据树木的形状和密度,可以预先设置一些生长的阈值,加快算法的速度。 4. 特征提取:对每个划分的区域提取特征,例如高度、密度、形状等。这些特征可以用来判断该区域是否为树木。 5. 树木识别:根据特征提取的结果,使用分类算法或规则进行树木的识别。可以使用机器学习算法,如支持向量机(SVM),随机森林等。 6. 点云分割:根据树木的识别结果,将属于个体树木的点从整个点云数据中分割出来。可以利用点云的拓扑结构和相邻点的关系进行分割。 以上是从TLS和MLS数据中进行个体树木分割的一般步骤。这个过程需要结合点云数据的特点和实际应用需求进行调整。目前,针对个体树木分割的算法和方法已经有很多研究,并且不断在优化和改进中。该技术在林业、城市规划等领域具有很高的应用潜力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值