头颈癌相关论文研读
文章平均质量分 91
Never_Jiao
这个作者很懒,什么都没留下…
展开
-
Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Lear
Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Learning: A Dual-Center Study**深度学习在PET-CT上全自动勾画头颈部肿瘤总体积的双中心研究**中科院SCI分区:4区 DCNN:二维方法数据集:22例病人的PET/CT图像 来自医院和肿瘤中心翻译 2021-10-02 17:54:55 · 644 阅读 · 0 评论 -
Fully Automated Gross Tumor Volume Delineation From PET in Head and Neck Cancer Using Deep Learning
Fully Automated Gross Tumor Volume Delineation From PET inHead and Neck Cancer Using Deep Learning Algorithms原文链接中科院SCI分区:三区(医学)总结:数据集PET图像 三种深度学习算法(Dense-Net、NN-UNet、Res-Net) 8种损失函数(Dice loss、广义Wasserstein Dice loss、Dice+XEnt loss、广义Dice loss、交叉熵、翻译 2021-09-18 11:19:47 · 413 阅读 · 0 评论 -
A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of h
A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers原文链接中科院SCI分区 二区Abstract靶区勾画是放射治疗中一个重要但耗时且具有挑战性的部分,其目标是在降低副作用风险的同时向靶区提供足够的剂量。对于头颈部癌症(HNC)来说,头颈部区域的复杂解剖和靶区与危险器官的接近使这一点变得复杂起来。本研究的目翻译 2021-09-17 21:40:24 · 633 阅读 · 0 评论 -
A 3D Dual Path U-Net of Cancer Segmentation Based on MRI
A 3D Dual Path U-Net of Cancer Segmentation Based on MRI总结:MRI数据集(没说获得方法,也没说是不是公开数据集),采用了U-Net加DPN的方法,Dice为0.772Abstract鼻咽癌是我国最常见的恶性肿瘤之一。然而,癌症的区域是微妙的、多变的和不规则的。在传统的诊断方式中,临床医生的诊断依赖于人工勾画,耗时长,需要丰富的先验经验。近年来,U-Net和DPN(Dual Path Network)的深度学习体系分别在生物医学分割和自然场景中原创 2021-09-16 15:42:10 · 415 阅读 · 0 评论 -
A 2.5D Cancer Segmentation for MRI Images Based on U-Net
A 2.5D Cancer Segmentation for MRI Images Based on U-Net总结:创新点不是很多,就是多个U-Net结果的融合。Abstract现有的图像分割方法大多局限于二维平面,只考虑一个方向的图像信息。U-Net作为一种经典的二维CNN图像分割框架,在分割精度上还需要进一步提高。此外,三维CNN需要很高的计算量。为了在分割精度和计算代价之间取得平衡,本文主要提出了一种基于U-Net的2.5D图像分割方法,用于鼻咽癌MRI肿瘤面积的预测。本文从三个正交方向的原创 2021-09-16 11:02:47 · 2139 阅读 · 0 评论 -
Gross Tumor Volume Segmentation for Head and Neck Cancer Radiotherapy using Deep Dense Multi-modalit
Gross Tumor Volume Segmentation for Head and Neck Cancer Radiotherapy using Deep Dense Multi-modality Network总结:PET/CT图像,多模态,3D Dense-Net,对比实验:3D U-Net 单模态Dense-Net 没有消融实验Abstract在放射治疗中,大体肿瘤体积(GTV)的准确描绘是制定治疗计划的关键。然而,头颈癌(HNC)由于头部各器官形态复杂,靶区背景对比度低,以及常原创 2021-09-15 16:02:21 · 749 阅读 · 0 评论 -
Segmentation of Head and Neck Tumours Using Modified U-net
Segmentation of Head and Neck Tumours Using Modified U-netAbstract提出了一种新的用于磁共振成像(MRI)头颈癌自动分割的神经网络。所提出的神经网络是基于U-net的,它结合不同分辨率的特征来实现医学图像的端到端定位和分割。在这项工作中,扩展卷积被引入到U-net中,以获得更大的感受野,从而提取多尺度特征。此外,该网络使用Dice失来减少类之间的不平衡。该算法在真实的MRI数据上进行了训练和测试。交叉验证结果表明,新网络在头颈部肿瘤分割方原创 2021-09-14 12:24:19 · 310 阅读 · 0 评论 -
Deep Learning-based Automated Delineation of Head and Neck Malignant Lesions from PET Images
Deep Learning-based Automated Delineation of Head and Neck Malignant Lesions from PET Images2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)(会议论文,文章只有3页,内容比较少,但是数据集可以参考一下)Abstract准确描述大体肿瘤体积(GTV)是放射肿瘤学治疗计划的关键。由于恶性病变的形状不规则且多种多原创 2021-09-14 10:50:58 · 351 阅读 · 0 评论 -
Automatic 3D Detection and Segmentation of Head and Neck Cancer from MRI Data.
Automatic 3D Detection and Segmentation of Head and Neck Cancer from MRI Data(更多的是传统方法,并不是深度学习方法,并且是18年的,对我个人来说参考意义不大。)Abstract提出了一种从磁共振成像(MRI)图像中自动分割头颈部三维肿瘤的新算法。该算法对MRI数据切片进行预处理,以提高图像质量,减少伪影。在切片之间进行强度标准化处理,然后对中心切片进行肿瘤区域分割,得到正确的强度范围和肿瘤区域的粗略位置。采用傅立叶插值方法原创 2021-09-14 09:31:06 · 338 阅读 · 1 评论 -
Patch-Based 3D Unet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilate
Patch-Based 3D Unet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated ConvolutionsAbstract肿瘤消除问题的自动分割与医学图像中ROI区域的人工注释有关,例如重要的人工努力以及观察者内部的可变性。精确的头颈癌肿瘤分割对于癌症(尤其是口咽癌)的放射治疗计划有巨大的潜能,并且也可以提高病人护理。近期,深度学习模型的发展已经十分有效,并且在一些语义分割和医学图像原创 2021-03-28 11:58:32 · 864 阅读 · 1 评论 -
Oropharyngeal Tumor Segmentation Using Ensemble 3D PET-CT Fusion Networks for the HECKTOR Challenge
Oropharyngeal Tumor Segmentation Using Ensemble 3D PET-CT Fusion Networks for the HECKTOR ChallengeAbstract在本文中,我们介绍了一个头颈癌患者CT和PET图像中GTVs描绘自动分割算法。数据是由MICCAI 2020 HECKTOR 挑战提供的。我们研究了两种方法,第一个,端到端的体积方法,第二个,融合了感兴趣切片3D上下文的切片预测方法。在一个划分出来的验证集上,Dice为0.669,在一个额外的原创 2021-03-27 15:19:39 · 567 阅读 · 0 评论 -
HECKTOR2020第二名 Combining CNN and Hybrid Active Contours for Head and Neck Tumor Segmentation in CT a
Combing CNN and Hybrid Active Contours for Head and Neck Tumor Segmentation in CT and PET ImagesHECKTOR第二名Abstract头颈癌肿瘤分割在放射学分析中有着重要的作用。在这篇文章中,基于卷积神经网络和Hybrid Active Contours,我们提出了一种PET和CT图像头颈癌肿瘤的自动分割方法。首先,对于concat的PET和CT图像,介绍了一个多通道的3D Unet来分割肿瘤。然后,我们通过原创 2021-03-24 19:59:48 · 839 阅读 · 6 评论 -
Hecktor2020第五名:Iteratively Refine the segmentation of head and neck tumor of FDG-PET and CT Images
Iteratively Refine the segmentation of head and neck tumor of FDG-PET and CT ImagesHecktor 2020 第五名Abstract在本文中我们通过融合pet和ct图像的信息提出了一个头颈癌肿瘤自动分割的网络架构。在这个架构中,多个3D Unets一个一个地训练。上面模型的预测和特征图将作为下一个模型的附加信息来进一步提升分割。实验表明迭代地提升优化可以提高分割表现。我们在HECKTOR2020的数据集上评估我们的网络框原创 2021-03-23 12:31:51 · 673 阅读 · 0 评论 -
Medical Transformer: Gated Axial-Attention for Medical Image Segmentation
Medical Transformer: Gated Axial-Attention for Medical Image Segmentation医学转换器:用于医学图像分割的门控轴向注意力Abstract在过去的十年中,深度卷积神经网络被广泛地应用于医学图像分割,并显示出良好的性能。然而,由于卷积体系结构中存在固有的归纳偏差,它们缺乏对图像中的长期依赖关系的理解。最近提出的基于Transformer的体系结构利用自我注意机制,编码长范围依赖关系,并学习具有高度表现力的表示法。这促使我们探索基于Tra原创 2021-03-17 21:43:05 · 5396 阅读 · 18 评论 -
Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention Network(HECKTOR2020第四名)
Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention NetworkHECKTOR2020第四名基于尺度注意力网络的PET/CT头颈部肿瘤自动分割Abstract在头颈部肿瘤的检测、诊断、预后、治疗计划和评估中,自动分割是提取定量成像生物标志物的重要步骤,也是一个具有挑战性的步骤。2020年头颈部肿瘤分割挑战赛(HECKTOR 2020)为比较FDG-PET和CT图像上口咽部主要大体目标体积(GTV)的不同原创 2021-03-16 19:34:42 · 1142 阅读 · 7 评论 -
Gather-Excite:Exploiting Feature Context in Convolutional Neural Networks
Gather-Excite:Exploiting Feature Context in Convolutional Neural NetworksGather-Excite:在卷积神经网络中利用特征上下文Abstract尽管在卷积神经网络(CNN)中使用自底向上的局部运算符可以很好地匹配自然图像的某些统计信息,但它也可能阻止此类模型捕获上下文的远程特征交互。在这项工作中,我们提出了一种简单,轻量级的方法,以在CNN中更好地利用上下文。我们通过引入一对运算符来做到这一点:Gather,可以有效地在很大的原创 2021-03-12 23:08:39 · 4443 阅读 · 0 评论 -
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and BeyondAbstract通过将特定于查询的全局上下文聚合到每个查询位置,Non-local Networks(NLNet)提出了一种捕获远程依赖关系的开创性方法。但是,通过严格的经验分析,我们发现,对于图像中的不同查询位置,由Non-local Networks建模的全局上下文几乎相同。在本文中,我们利用这一发现创建了一个基于查询无关公式的简化网络,该公式可保持NLNet的准原创 2021-03-06 17:36:46 · 1150 阅读 · 0 评论 -
Selective Kernel Networks
Selective Kernel NetworksAbstract在标准的卷积神经网络(CNN)中,每层人工神经元的感受野都被设计成具有相同的大小。众所周知,视觉皮层神经元的感受野大小受刺激的调节,在构建CNN时很少考虑这一点。我们提出了一种CNN中的动态选择机制,允许每个神经元根据输入信息的多个尺度自适应地调整其感受野大小。设计了一种称为选择核(SK)单元的构建块,利用这些分支中的信息指导的Softmax注意力对不同核大小的多个分支进行融合。对这些分支的关注不同,融合层神经元的有效感受野大小也不同。多原创 2021-03-06 11:18:45 · 758 阅读 · 0 评论 -
CBAM: Convolutional Block Attention Module
CBAM: Convolutional Block Attention ModuleAbstract提出了卷积块注意力模块(CBAM),这是一种简单而有效的前馈卷积神经网络注意力模块。==在给定一个中间特征图的情况下,我们的模块沿着通道和空间两个不同的维度顺序地推断关注图,然后将关注图与输入特征图相乘以进行自适应特征求精。==由于CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,而开销可以忽略不计,并且可以与基本CNN一起进行端到端的训练。我们通过在ImageNet-1K、MS Coc原创 2021-03-04 17:39:43 · 1279 阅读 · 1 评论 -
HECKTOR2020第三名论文研读
The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel ‘Squeeze & Excitation’ Blocks使用带有空间和通道“挤压和激发”模块的nnU-Net进行的头颈部肿瘤分割Abstract头颈部(H&N)癌症是癌症死亡的第八大最常见原因。放射疗法是最有效的疗法之一,但它在很大程度上依赖于医学图像上肿瘤体积的轮廓。在本文中,3D nnU-Net首先应用于在氟脱氧葡萄糖正电子发射断层扫描(原创 2021-03-03 11:36:03 · 652 阅读 · 0 评论 -
UNet++: A Nested U-Net Architecture for Medical Image Segmentation
UNet++: A Nested U-Net Architecture for Medical Image SegmentationUNet ++:用于医学图像分割的嵌套U-Net体系结构Abstract在本文中,我们介绍了UNet ++,这是一种用于医学图像分割的功能更强大的新体系结构。我们的架构本质上是一个深度监督的编码器/解码器网络,其中,编码器和解码器子网络通过一系列嵌套的密集跳跃路径连接。重新设计的跳跃路径旨在减小编码器和解码器子网的特征图之间的语义差距。我们认为,当来自解码器和编码器网络的原创 2021-03-01 21:49:33 · 2207 阅读 · 0 评论 -
UNET 3+: A FULL-SCALE CONNECTED UNET FOR MEDICAL IMAGE SEGMENTATION
UNET 3+: A FULL-SCALE CONNECTED UNET FOR MEDICAL IMAGE SEGMENTATIONUNET 3+:一种用于医学图像分割的全尺寸互联UNETAbstract近年来,基于深度学习的语义分割受到越来越多的关注。UNET是一种编解码器结构的深度学习网络,广泛应用于医学图像分割。多尺度特征组合是实现精确分割的重要因素之一。**UNET++是通过设计具有嵌套和密集跳跃连接的体系结构而开发的一种改进的UNET。**然而,它没有从完整的尺度上发掘足够的信息,仍有很大原创 2021-02-28 17:21:46 · 4949 阅读 · 0 评论 -
The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel ‘Squeeze & Excitation’ B
The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel ‘Squeeze & Excitation’ Blocks使用带有空间和通道“挤压和激发”模块的nnU-Net进行头颈部肿瘤分割Abstract头颈部(H&N)癌症是癌症死亡的第八大最常见原因。放射疗法是最有效的疗法之一,但是它在很大程度上依赖于医学图像上肿瘤体积的轮廓。在本文中,3D nnU-Net首次应用于在氟脱氧葡萄糖正电子发射断层扫描(原创 2021-02-25 21:42:33 · 450 阅读 · 3 评论 -
Two-Stage Approach for Segmenting Gross Tumor Volume in Head and Neck Cancer with CT and PET Imaging
Two-Stage Approach for Segmenting Gross Tumor Volume in Head and Neck Cancer with CT and PET Imaging头颈部肿瘤CT和PET影像二期分割方法Abstract头颈部癌症的放射治疗计划包括在CT图像上仔细描绘肿瘤目标体积,通常还需要PET扫描的帮助。在这项研究中,作为HECKTOR挑战的一部分,我们描述了一种使用深卷积神经网络的两阶段方法自动分割原发肿瘤的大体肿瘤体积的方法。我们训练一个分类网络来选择可能包含原创 2021-02-21 21:32:34 · 287 阅读 · 0 评论 -
Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck HECKTOR2020第一名论文研读
Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images挤压激发归一化在PET和CT联合图像中自动勾画头颈部原发肿瘤的研究摘要开发健壮、准确、全自动的医学图像分割方法在临床实践和放射组学研究中至关重要。在这项工作中,我们在MICCAI2020头颈部肿瘤分割挑战(HECKTOR)的背景下,提出了一种在正电子发射断层原创 2021-02-20 19:18:26 · 453 阅读 · 2 评论 -
Overview of the HECKTOR Challenge atMICCAI2020:Automatic Head and Neck Tumor Segmentation in PET/CT
2020年MICCAIHECKTOR挑战赛综述:PET/CT中头颈部肿瘤的自动分割摘要本文概述了第一个HEad and neck TumOR(HECKTOR)挑战,该挑战是作为2020年第23届医学图像计算和计算机辅助干预国际会议(MICCAI)的卫星活动而组织的。挑战的任务是自动分割FDG-PET / CT图像中的头颈部原发肿瘤总体积,主要集中在口咽区域。该数据是从五个中心收集的,共254组图像,分为201个训练案例和53个测试案例。有64个注册团队和18个团队提交了重要意见,表明了对该任务的兴趣。最原创 2021-02-20 12:38:45 · 1138 阅读 · 0 评论 -
Automatic Segmentation of Head and Neck Tumors and Nodal Metastases in PET-CT scans
PET-CT扫描中头颈部肿瘤和淋巴结转移瘤的自动分割摘要放射组学是利用医学图像中的定量图像生物标记物来预测疾病特征,它依赖昂贵的感兴趣区域(ROI)人工注释来集中分析。本文提出了一种从FDG-PET和CT图像中自动分割头颈部肿瘤和淋巴结转移的方法。使用放射肿瘤学家手动描绘的ground truth感兴趣区,在PET-CT图像上训练全卷积神经网络(2D UNet和3D V-Net),用于202名患者。结果表明,这两种模式具有互补性,在统计学上有显著改善,分别从仅使用CT和PET的分割的48.7%和58.2原创 2021-02-19 15:44:58 · 508 阅读 · 0 评论 -
DCANet:Learning Connected Attentions for Convolutional Neural Networks
摘要在本文中,我们提出了深度连接注意力网络(DCANet),这是一种新的设计,它在不改变CNN模型内部结构的情况下,增强了CNN模型中的注意力模块。(原文写到,所有代码和模型都是公开的.)IntroductionDCANet从前一个注意力模块中收集信息并将其传递给下一个注意力块,使注意力块之间相互协作,从而提高注意力的学习能力.在不修改内部结构的情况下,DCANet在注意块之间引入了一系列连接.它可以应用于各种自我注意模块,例如SENet,CBAM,SKNet等,而不考虑基础架构的选择.DCANet结原创 2021-01-31 22:39:17 · 736 阅读 · 0 评论 -
论文研读“A Method for PET-CT Lung Cancer Segmentation based on Improved Random Walk”
基于改进的随机游走的PET-CT肺癌分割方法摘要首先,通过使用区域增长和数学形态学对PET图像进行预分割来获得初始轮廓。初始轮廓可以用于自动获得PET和CT图像上随机游走所需要的种子点,同时,它们也可以用作CT图像上随机游走的约束,以解决肿瘤区域的缺点。如果未增强CT图像,则CT图像不明显。由于CT提供了有关解剖结构的必要细节,因此CT的解剖结构可用于提高PET图像上随机游走的权重。最后,对在PET和CT图像上随机游走获得的相似度矩阵进行加权,以在PET和CT图像上获得相同的结果。随机游走随机游走.原创 2021-01-14 18:43:41 · 563 阅读 · 0 评论 -
论文“基于深度学习的鼻咽部肿瘤PET_CT双模态图像分割方法研究”
记录一下论文中看到的一些对自己可能有用的内容。图像预处理及扩增在分割之前,进行图像配准,配准过程如下:首先采用阈值分割法(阈值设置为200Hu)将每个病人的CT图像中的颅骨分离出来,然后随机选择一个病人的颅骨图像作为模板,将其他病人的颅骨图像配准到该模板图像获得放射变换矩阵,最后将该仿射变换矩阵应用于对应的PET图像以及标签图像,得到配准后的PET图像以及配准后的标签图像(在口咽癌数据集中,已经有了CT图像和PET图像,但是是否配准过并不清楚,配准这一部分的代码实现,自己还不会)。在数据预处理的最后原创 2021-01-09 20:54:49 · 1678 阅读 · 9 评论 -
Gross Tumor Volume Segmentation for HNC Radiotherapy using Deep Dense Multi-modality Network
论文研读——Gross Tumor Volume Segmentation for Head and Neck Cancer Radiotherapy using Deep Dense Multi-modality Network摘要数据集方法工作的总体流程图本文提出的网络结构比较方法实验设置结果特征图可视化定性分析定量分析分割效果不好导致Dice偏低的例子摘要利用多模态PET和CT图像,提出了一种基于深度学习的HNC自动GTV分割框架。分割框架的backbone是基于密集连接的3D卷积构建的,这可以实原创 2020-12-05 21:48:53 · 519 阅读 · 3 评论 -
Automatic Primary Gross Tumor Volume Segmentation for Nasopharyngeal Carcinoma using ResSE-UNet
论文研读——Automatic Primary Gross Tumor Volume Segmentation for Nasopharyngeal Carcinoma using ResSE-UNet摘要目标数据集方法ResSE-UNet网络结构ResSE块的详细信息SE块的信息SE block+Inception ModuleSE block+ResNet ModuleDense Aspp损失函数参数设置评价指标及实验结果摘要提出了ResSE-UNet网络和一个用于描述GTV的三元交叉熵(TCE)损原创 2020-11-25 11:27:12 · 745 阅读 · 1 评论