联邦学习自编码器

本文提供一个基于PySyft和Torch的联邦学习案例,使用自编码器(AE)来进行图像重建任务。我们将使用Federated Average算法来合并每个客户端的AE权重,并保护每个客户端的隐私。下面是实现该案例的代码:

首先,我们导入必要的库。

import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
import syft as sy

然后,我们定义自编码器的模型类。

class AE(nn.Module):
def __init__(self):
super(AE, self).__init__()

# 编码器
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=7)
)

# 解码器
self.decoder = nn.Sequential(
nn.ConvTranspose2d(64, 32, kernel_size=7),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()
)

def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x

接下来,我们定义训练和测试函数。在训练函数中,我们使用PySyft在每个客户端上训练AE,并使用Federated Average算法在每个轮次结束时加权平均客户端权重。在测试函数中,我们使用联邦学习的模型进行图像重建,并计算测试损失。

# 训练函数
def train(model_ptr, optimizer, criterion, data_loader, device):
model_ptr.train()
for batch_idx, (data, _) in enumerate(data_loader):
# 发送数据到客户端
data = data.send(model_ptr.location)
target = data.clone().detach()
# 在客户端上进行训练
optimizer.zero_grad()
output = model_ptr(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 获取客户端权重并加权平均
model_ptr.weight.data = model_ptr.weight.data.get() + model_ptr.weight.grad.data
model_ptr.weight.grad.data.zero_()
# 将客户端权重加权平均
model_ptr.weight.data /= len(data_loader)



接着上面的代码,我们可以在测试函数中使用联邦学习的模型进行图像重建,并计算测试损失。

# 测试函数
def test(model_ptr, data_loader, device):
model_ptr.eval()
test_loss = 0
with torch.no_grad():
for data, _ in data_loader:
# 发送数据到客户端
data = data.send(model_ptr.location)
target = data.clone().detach()
# 使用联邦学习的模型进行图像重建
output = model_ptr(data)
test_loss += F.mse_loss(output.get(), target, reduction='sum').item()
# 计算平均测试损失
test_loss /= len(data_loader.dataset)
return test_loss

现在,我们可以开始构建联邦学习环境并进行训练了。首先,我们创建虚拟工人,并将其分配给不同的客户端。

# 创建虚拟工人
hook = sy.TorchHook(torch)
workers = [sy.VirtualWorker(hook, id="worker{}".format(i)) for i in range(3)]

# 将数据分配给不同的客户端
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
federated_train_loader = sy.FederatedDataLoader(train_data.federate(workers), batch_size=64, shuffle=True, num_workers=0, drop_last=True)

然后,我们在每个客户端上训练AE,并使用Federated Average算法进行加权平均客户端权重。我们训练10轮,并在每轮结束时计算并输出平均测试损失。

# 初始化模型指针
model = AE().to(device)
model_ptr = model.send(workers[0])

# 设置超参数
criterion = nn.MSELoss()
learning_rate = 0.01
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
train(model_ptr, optimizer, criterion, federated_train_loader, device)
test_loss = test(model_ptr, federated_train_loader, device)
print('Epoch [{}/{}], Test Loss: {:.4f}'.format(epoch+1, num_epochs, test_loss))

# 获取加权平均模型并在本地进行测试
avg_model_ptr = model_ptr.copy().move(workers[0])
avg_model_ptr.weight.data = torch.zeros_like(avg_model_ptr.weight.data)
avg_model_ptr.weight.requires_grad = False
for ptr in model_ptr.pointers():
avg_model_ptr.weight.data += ptr.weight.data / len(workers)
test_loss = test(avg_model_ptr, federated_train_loader, device)
print('Final Test Loss: {:.4f}'.format(test_loss))

这样,我们就成功地完成了一个基本的联邦学习案例,使用PySyft模拟了一个简单的图像重建任务。

本文由 mdnice 多平台发布

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值