第四十一天| 卡尔网46. 携带研究材料(同01背包问题)、416. 分割等和子集

科学家小明面临行李空间和材料价值选择难题,通过01背包问题解决策略,最大化携带研究材料的价值。
摘要由CSDN通过智能技术生成

卡尔网46. 携带研究材料

题目链接:46 携带研究材料

题干:小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

  • 输入描述:

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

  • 输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值

思考一:此题为01背包问题的类似题目。经典动态规划问题-01背包问题:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。


  • 确定dp数组以及下标的含义

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,最大价值总和。如下图:

  • 确定递推公式

从dp[i][j]的定义可以看出,dp[i][j]由两个方向推出来。

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的尚能容纳的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值。

故递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  • dp数组如何初始化
  1. 首先按dp[i][j]的定义,如果背包容量j为0即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
  2. 其次从递推公式dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由   dp[i-1][j] 推导出来,那么dp[0][j]就一定要初始化。                                                      dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。          那么当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。     当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
  3.  最后从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。只不过一开始就统一把dp数组统一初始为0,更方便一些。

初始化效果如图:

  • 确定遍历顺序 

如下图可知本题有两个遍历的维度:物品与背包重量。那么先遍历物品还是先遍历背包重量?

其实都可以。虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导。

  • 举例推导dp数组

案例:三件物体,重量分别为1,3,4;价值分别15,20,30。背包承受重量为4。来看一下对应的dp数组的数值,如下图:

代码:

#include<iostream>
#include<vector>
using namespace std;

//采用二维数组存储的最大价值
int knapsack_2D(vector<int>& weight, vector<int>& value, int bagWeight) {
    //dp[i][j]表示在背包空间为j的情况下,从下标0~i中的物品里任取,能达到的最大价值
    vector<vector<int>> dp(weight.size(), vector<int>(bagWeight + 1, 0));

    for (int j = weight[0]; j <= bagWeight; j++)        //处理dp[0][j]
        dp[0][j] = value[0];

    for (int i = 1; i < weight.size(); i++) {       //遍历物品
        for (int j = 0; j <= bagWeight; j++) {      //遍历背包重量
            if (j < weight[i])
                dp[i][j] = dp[i - 1][j];
            else
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }
    return dp[weight.size() - 1][bagWeight];
} 


int main() {
    int bagWeight, objectNum;
    cin >> objectNum >> bagWeight;

    vector<int> weight(objectNum, 0);
    vector<int> value(objectNum, 0);

    for (int i = 0; i < objectNum; i++)
        cin >> weight[i];
    for (int i = 0; i < objectNum; i++)
        cin >> value[i];

    cout << knapsack_2D(weight, value, bagWeight) << endl;
}

思考二:使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,公式变换成:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);此时与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组,只用dp[j](一维数组,也可以理解是一个滚动数组)。


  • 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  • 一维dp数组的递推公式

从dp[j]的定义可以看出,dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i。由题干可知取最大值。

所以递归公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

  • 一维dp数组如何初始化

由dp[j]定义可知,dp[0]应该是0,因为背包容量为0所背的物品的最大价值就是0。

其次从递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);可以看出非0下标都可以初始化为0

  • 一维dp数组遍历顺序

先考虑先遍历物品再遍历背包重量的情况,背包重量是要倒序遍历的。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

其次考虑先遍历背包重量再遍历物品的情况。

由于一维dp中,背包容量一定是要倒序遍历,如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。所以这种方式不行。

  • 举例推导dp数组

案例:三件物体,重量分别为1,3,4;价值分别15,20,30。背包承受重量为4。来看一下对应的dp数组的数值,如下图:

代码:

#include<iostream>
#include<vector>
using namespace std;

//采用滚动数组存储的最大价值
int knapsack_1D(vector<int>& weight, vector<int>& value, int bagWeight) {
    //dp[j]表示背包空间为j的情况下,从所有物品里任取,能达到的最大价值
    vector<int> dp(bagWeight + 1, 0);

    for (int i = 0; i < weight.size(); i++)     //遍历物品
        for (int j = bagWeight; j >= weight[i]; j--)     //遍历背包重量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    
    return dp[bagWeight];  
}


int main() {
    int bagWeight, objectNum;
    cin >> objectNum >> bagWeight;

    vector<int> weight(objectNum, 0);
    vector<int> value(objectNum, 0);

    for (int i = 0; i < objectNum; i++)
        cin >> weight[i];
    for (int i = 0; i < objectNum; i++)
        cin >> value[i];

    cout << knapsack_1D(weight, value, bagWeight) << endl;
}

Leetcode 416. 分割等和子集 

题目链接:416 分割等和子集 

题干:给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

思考:动态规划。本题为01背包问题的相关问题。将信息套入01背包思路中:

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

  • 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

套到本题,dp[j]表示 容量为i的背包装下的最大数字和。

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,则说明背包就装满了。

  • 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  • dp数组如何初始化

在01背包,一维dp中,如果题目给的价值都是正整数那么非0下标都初始化为0即可,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0即可。

  • 确定遍历顺序

与01背包问题一维dp数组顺序相同,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

  • 举例推导dp数组

dp[j]的数值一定是小于等于j的。如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j。

用例1,输入[1,5,11,5] 为例,如图:

代码:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;
        for (int n : nums)
            sum += n;
        if (sum % 2 != 0)    return false;       //总数组和为奇数则不能分割
        vector<int> dp(sum / 2 + 1, 0);      //dp[i]表示容量为i的背包装下的最大价值

        for (int i = 0; i < nums.size(); i++)       //遍历数字
            for (int j = sum / 2; j >= nums[i]; j--)       //遍历背包容量,只处理放得下的情况
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

        return dp[sum / 2] == sum / 2;
    }
};

自我总结:

理解01背包问题两种写法,在确定dp数组作过程记录,理解递归公式中思路来源,清晰遍历顺序要点。

  • 20
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值