ComfyUI上手使用记录

资料

AI绘画之ComfyUI
Stable Diffusion WEUI中的SDV1.5与SDXL模型结构Config对比

stable-diffusion-webui中stability的sdv1.5和sdxl模型结构config对比
【Stable Diffusion】向未来而生,关于SDXL你要知道事儿

【ComfyUI教程】ComfyUI安装教程,插件安装教程
【ComfyUI教程】基础概念讲解,新手轻松搭建工作流
【ComfyUI教程】常用必备插件的使用与优化技巧
【ComfyUI教程】升高放大无极限,自由组建放大模块
【ComfyUI教程】从裁剪到重绘,图生图完整搭建
【ComfyUI教程】SDXL工作流搭建
【ComfyUI教程】Clip的多种不同应用
【ComfyUI教程】Lcm-Turbo极速出图,实时绘画工作流
【ComfyUI教程】集成节点与管道封装教程

安装

【https://zhaojian.blog.csdn.net/article/details/141248147】
安装ComfyUI的插件
在这里插入图片描述
插件的管理
在这里插入图片描述

基础概念

采样器
在这里插入图片描述
K采样器和K采样器(高级)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
潜在空间 Latent Space
像素空间 pixel Space

在这里插入图片描述
在这里插入图片描述
潜在空间组
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
文字处理成可用的编码信息
在这里插入图片描述
在这里插入图片描述
可取消队列
在这里插入图片描述
可重新加载
在这里插入图片描述
加载器
在这里插入图片描述
加载图像
在这里插入图片描述
图生图:将图像进行VAE编码
在这里插入图片描述
在这里插入图片描述

常用的工具和插件

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

LoRA加载器
从模型出来,连上clip提示词,输出的模型传给K采样器
在这里插入图片描述
调整布局
在这里插入图片描述
clip调整层
在这里插入图片描述
多个LoRA加载器
在这里插入图片描述
LoRA加载器输出给K采样器
在这里插入图片描述
将LoRA存储为单独储存为模板
在这里插入图片描述
加载存储的模板
在这里插入图片描述
Primitive元节点
在这里插入图片描述
一个参数控制模型强度+CLIP强度
在这里插入图片描述

放大图像

空间内放大
在这里插入图片描述
Latent缩放,Latent按系数缩放
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
二次采样
在这里插入图片描述
设置采样器
在这里插入图片描述
新建一个节点,图像按系数缩放,通过模型放大
在这里插入图片描述
通过模型放大(英文版)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
放大模型加载器
在这里插入图片描述
SD放大
在这里插入图片描述
在这里插入图片描述
做成一个模板
在这里插入图片描述

空间外放大(?)

从裁剪到重绘

图像裁剪
在这里插入图片描述
IPAdapter-ComfyUI
在这里插入图片描述
自动序列,自动出图
在这里插入图片描述
图像按系数缩放
在这里插入图片描述
提词反推,w1.4插件
在这里插入图片描述
在这里插入图片描述
字符串操作–>提升为变量
在这里插入图片描述
翻译节点
在这里插入图片描述
浅空间转换
替换背景
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
两个K采样器,第一个出图,第二个细节

SDXL工作流搭建

第一步,先搞出来
在这里插入图片描述
高级采样器,两次渲染
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

高级采样器二次采样完整工作流
在这里插入图片描述
风格化插件
在这里插入图片描述
使用SDXL风格化提示词插件
在这里插入图片描述
选择风格
在这里插入图片描述
节点中,不同的风格
在这里插入图片描述
加入SDXL风格化节点
在这里插入图片描述
CLIP文本编码SDXL
在这里插入图片描述
在这里插入图片描述
数学表达式
在这里插入图片描述
连接点/转接点
在这里插入图片描述

Clip的多种不同的应用

controlnet应用
在这里插入图片描述
最新版本
在这里插入图片描述

在这里插入图片描述
contronet预处理节点插件
在这里插入图片描述
controlnet预处理器
在这里插入图片描述
Canny细致线预处理器
在这里插入图片描述

Aux集成预处理器
在这里插入图片描述
预处理模型所在位置
在这里插入图片描述
原理
在这里插入图片描述
在这里插入图片描述
同时参考两个词
在这里插入图片描述

Lcm-Turbo极速出图

在这里插入图片描述
Lcm放到loras文件夹中
在这里插入图片描述
LoRA中找到LCM分类
在这里插入图片描述
加入调整节点
在这里插入图片描述
模型离散采样算法
在这里插入图片描述

采样器
加粗样式
turbo模型
在这里插入图片描述
在这里插入图片描述
turbo采用的是自定义采样器
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从Civitai下载SDXL Turbl模型
在这里插入图片描述
在这里插入图片描述

使用三方的SDXL Turbo模型
在这里插入图片描述
在这里插入图片描述

集成节点

efficiency-nodes-comfyui
在这里插入图片描述
ComfyUI_tinyterraNodes
在这里插入图片描述

**加粗样式**
在这里插入图片描述
在这里插入图片描述
A111 sd风格
在这里插入图片描述

在这里插入图片描述
ttn
在这里插入图片描述
转换为节点组
在这里插入图片描述

<think>好的,用户想了解如何快速开始使用ComfyUI,我需要根据提供的引用资料整理一个入门指南。首先,用户可能刚接触ComfyUI,所以需要从最基础的步骤开始。根据引用[2],ComfyUI的下载安装是第一步,应该详细说明如何下载和安装。接下来,引用[1]和[3]提到有基础教程,包括模型和插件的安装、工作流节点等,所以需要分步骤讲解这些内容。用户可能需要知道如何获取整合包,引用[3]提到可以在CSDN免费领取,应该包含这个信息。另外,用户可能对节点式界面不熟悉,需要解释基本操作,比如添加节点、连接流程。还要提到SDXL工作流的搭建,因为这是教程的一部分。可能还需要提醒常见问题,比如依赖安装和错误处理。最后,生成相关问题,帮助用户深入了解更多内容。确保步骤清晰,语言简洁,让新手也能理解。</think>### ComfyUI 快速入门指南 #### 一、环境部署与安装 1. **下载安装包** - 访问GitHub官方仓库下载最新版本:https://github.com/comfyanonymous/ComfyUI[^2] - 或直接获取整合包(含SD/ComfyUI/AI视频工具):扫描引用[3]中的CSDN二维码免费领取完整AI绘画整合包 2. **基础环境配置** - 确保已安装Python 3.10+和CUDA 12.1+ - 解压整合包后运行`install_dependencies.bat`自动安装依赖 #### 二、核心功能初体验 1. **界面认知** 节点式操作界面包含三大区域: ``` [模型加载区] --连接--> [处理节点区] --输出--> [预览/保存区] ``` 2. **基础工作流搭建**(以文生图为例) ```python 加载模型 -> CLIP文本编码 -> K采样器 -> VAE解码 -> 图像保存 ``` #### 三、关键操作技巧 1. **插件安装方法** - 将插件文件放入`ComfyUI/custom_nodes/`目录 - 通过`Manager`节点检查插件依赖(引用[1]提到的Inpenting模块需额外安装) 2. **工作流模板应用** - 直接拖拽`.json`工作流文件到界面自动加载 - 引用[3]提供的SDXL工作流模板已包含优化参数配置 #### 四、性能优化建议 1. 启用`xformers`加速: ```bash python main.py --xformers ``` 2. 使用`--lowvram`参数适配低显存设备 #### 五、新手常见问题 1. 模型加载失败:检查模型文件是否放入`models/checkpoints/` 2. 节点连接错误:按`Ctrl+Z`撤销最近操作 3. 实时预览设置:在图像预览节点启用`Live`模式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵健zj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值