矩阵论核心知识点

矩阵论是工程数学领域必需要掌握的基础工具,无论是写文章还是做开发,都会频繁用到相关知识,下面简要记录矩阵论中的核心知识点与公式。

1 线性空间、线性算子、线性变换、基、维数

向量空间中任意两个向量满足加法与乘法封闭,且满足8条性质,这样同样性质的集合就是线性空间。

  • a+b=b+a
  • (a+b)+c=a+(b+c)
  • 1*a=a
  • 0+a=a
  • a+(-a)=0
  • i(a+b)=ia+ib
  • (i+j)a=ia+ja
  • (ij)a=i(ja)

空间中的一组向量的组合可以表示空间中其他任意向量,这组向量叫做基向量。比如三维空间中的x,y,z轴上的单位向量\large e_{x}(1,0,0),\large e_{y}(0,1,0),\large e_{z}(0,0,1)就是三维空间的一组基向量,维数为基向量的个数3,当向量换为矩阵时,同样可以将这个概念推广到矩阵空间。

想象一下,坐标原点不动,三个坐标轴在空间中转动一次,新的单位向量记为\large e'_{x},\large e'_{y},\large e'_{z},它同样也是空间的一组基,这两组基的互相表示关系就由这个“转动”来表示,即转移矩阵

\large e'=eC

\large e=e'C^{-1}

同时,原本的坐标也会有对应的变换关系,例如原坐标在原系统中可表示为

\large a_{x}e_{x} +a_{y}e_{y}+a_{z}e_{z}=(a_{x},a_{y},a_{z})\begin{pmatrix} e_{x}\\ e_{y} \\ e_{z} \end{pmatrix}

在新的坐标系中的坐标为

\large a'=C^{-1}a

线性子空间的基与维数的求法

  1. 根据条件列出线性方程组
  2. 解方程组

子空间的和与交

\large V_{1}\bigcap V_{2}=\left \{ a|a\in V_{1},a\in V_{2}\right \}

\large V_{1}+V_{2}=\left \{ a_{1}+a_{2}|a_{1}\in V_{1},a_{2}\in V_{2} \right \}

线性变换\large \mathbb{A}

同一个空间中的线性算子运用叫做线性变换,变换矩阵为方阵,举例如下

有一组基e_{1}=(-1,0,2),e_{2}=(0,1,1),e_{3}=(3,-1,0),经过线性变换\large \mathbb{A}变为\mathbb{A}(e_{1})=(-5,0,3),\mathbb{A}(e_{2})=(0,-1,6),\mathbb{A}(e_{3})=(-5,-1,9),

1.求线性变换\large \mathbb{A}在基e_{1},e_{2},e_{3}下的矩阵

首先假设有一个向量,在原基象下的坐标为k1,k2,k3,线性变换后变为新坐标,以\mathbb{A}(e_{1})为例,

k_{1}(-1,0,2)+k_{2}(0,1,1)+k_{3}(3,-1,0)=(-5,0,3)

可解出矩阵的第一列为2,-1,-1,以此类推,可算出变换矩阵。

2 多项式矩阵、Smith标准形、Jordan标准形

特征矩阵

\large \lambda I-A

K阶行列式因子为所有K阶子式的最大公因式,记为

\large D_{k}(\lambda )

不变因子与行列式因子的关系为

\large D_{n}(\lambda )=d_{1}\cdots d_{n}

初等因子为次数大于0的全部不变因子

对角元素为首1多项式的叫做Smith标准形

初等因子组构成约当块,λ为对角元素,次数为约当块的阶,构成Jordan标准形

3 LU分解、QR分解、最大秩分解

矩阵的所有k-1阶子式均大于0,可以进行LU分解

Schmidt正交化

化矩阵A为行最简型A',秩为\large rank(A),A的最大秩分解

\large A=BC

其中B为前\large rank(A)列组成的矩阵,C为A'的前\large rank(A)行组成的矩阵

4 谱半径、条件数

矩阵\large A的特征值中的绝对值最大者\large \left | \lambda \right |_{max}为矩阵的谱半径。

\large \rho (A)=\left | \lambda \right |_{max}

当特征值为虚数时,谱半径为实部与虚部的平方和的开方的最大值。

条件数用来表示方程组是否病态,对应不同的矩阵范数,有对应的条件数

\large cond(A)=\left \| A \right \|\left \| A^{-1} \right \|

5 Cayley–Hamilton定理

有多项式如下:

\large \phi (A)=a_{0}A^0+a_{1}A^1+a_{2}A^2+\cdots +a_{n}A^n

对于矩阵A有特征值λ,上式可用λ替换A,记A的特征多项式为\large p(\lambda ),除上式的余数为\large q(\lambda ),

\large \phi (A)=q(\lambda )

6 矩阵级数、矩阵函数、矩阵范数

判断矩阵级数的敛散性可使用\large \left \| A \right \|_{\infty }\large \left \| A \right \|_{1},当范数<1时,矩阵级数收敛,进一步小于收敛半径时,矩阵级数绝对收敛。

收敛半径的求法,设各项系数为a,收敛半径r为

\large r=\lim_{k\rightarrow \infty }\left |\frac{a_{k}}{a_{k+1}} \right |

使用谱半径判断时

\large \rho (A)<1,则矩阵级数\large \sum_{k=0}^{\infty }A^{k}收敛,反之也成立,如收敛于1,则矩阵级数为\large (I-A)^{-1}

常用矩阵函数:

\large e^A=\sum_{k=0}^{\infty }\frac{A^k}{k!}

\large \sin A=\sum_{k=0}^{\infty }(-1)^k\frac{A^{2k+1}}{(2k+1)!}

\large \cos A=\sum_{k=0}^{\infty }(-1)^k\frac{A^{2k}}{(2k)!}

关于Jordan标准形的幂函数使用\large A^k=PJ^kP^{-1}求法

如何求f(A)?

1. Cayley–Hamilton法。

2.如果A可化为对角阵,\large f(A)=Cdiag(f(\lambda _1),f(\lambda _2)\cdots )C^{-1},C为特征向量组合。

3.如果A是亏损矩阵,不能与对角矩阵相似,可写为Jordan标准形,T的求法要借助广义特征向量算法了。

\large \large f(A)=Tdiag(f(J_1(\lambda _1)),f(J_2(\lambda _2))\cdots )T^{-1}

其中\large f(J_i(\lambda _i))=\begin{pmatrix} f(\lambda_i) &f(\lambda'_i) &\frac{1}{2!}f(\lambda''_i) \\ &f(\lambda_i) &f(\lambda'_i) \\ & &f(\lambda_i) \end{pmatrix},注意此处只写了3阶的形式,且是对λ求导,不是别的

\large \left \| A \right \|_{1}为矩阵列范数,列元素绝对值和最大数

\large \left \| A \right \|_{\infty }为矩阵行范数,行元素绝对值和最大数

7 欧氏空间

欧几里得空间就是定义了内积的实线性空间

两向量的夹角公式

\large \left \langle x,y \right \rangle=arccos\frac{\left ( x,y \right )}{\left | x \right |\left | y \right |}

正交向量组中的向量两两相交,夹角为90度,线性无关。

单位向量构成的正交基叫标准正交基,任意向量可表示为

\large x=x_{1}\varepsilon _{1}+x_{2}\varepsilon _{2}+\cdots +x_{n}\varepsilon _{n}

内积的矩阵表示

\large \left ( x,y \right )=X^{T}AY

其中矩阵A称为基的度量矩阵,它是对称正定的,表示为

\large A=\begin{pmatrix} (\varepsilon _{1},\varepsilon _{1})&(\varepsilon _{1},\varepsilon _{2}) & \cdots&(\varepsilon _{1},\varepsilon _{n}) \\ (\varepsilon _{2},\varepsilon _{1})&(\varepsilon _{2},\varepsilon _{2}) & \cdots&(\varepsilon _{2},\varepsilon _{n}) \\ \cdots& \cdots & \cdots & \cdots \\ (\varepsilon _{n},\varepsilon _{1})&(\varepsilon _{n},\varepsilon _{2}) & \cdots&(\varepsilon _{n},\varepsilon _{n}) \\ \end{pmatrix}

两组不同基的度量矩阵不同,但是他们是合同的。

8 矩阵的广义逆

当讨论不是方阵的矩阵时,矩阵的逆推广到一般情况,最常用的逆是\large A^{+},性质如下

满秩方阵,\large A^+=A^{-1}

对角方阵,\large A^+=diag(d^{+}_1d^{+}_2\cdots d^{+}_n),d^{+}_i=\left\{\begin{matrix} \frac{1}{d_i},d_i\neq 0\\ 0,d_i=0 \end{matrix}\right.

行最大秩,\large A^+=A^{T}(AA^{T})^{-1}=A_{R}^{-1}

列最大秩,\large A^+=(A^{T}A)^{-1}A^{T}=A_{L}^{-1}

秩比行列数都小,\large A=BC,\large A^+=C^+B^+=C^T(CC^T)^{-1}(B^TB)^{-1}B^T

方程组的通解为\large x=A^+b+(E-A^+A)z,按照是否有解分为极小范数解极小范数最小二乘解

  • 5
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值