numpy 概率分布

这篇博客介绍了numpy库中常见的概率分布,包括二项分布(用于描述独立伯努利试验的结果)、均匀分布(在指定区间内随机抽样)、高斯分布(正态分布),以及卡方分布。详细阐述了各个分布的参数含义及应用,如二项分布的试验次数和成功概率,均匀分布的边界设定,高斯分布的均值和标准差,以及卡方分布的自由度。参考了多位作者的相关文章进行深入解析。
摘要由CSDN通过智能技术生成

二项分布 

  • numpy.random.binomial(npsize=None)
  • 举例: 扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率
  • n: 试验的次数
  • p: 成功的概率
  • size: 输出的格式
  • 返回n次试验得到成功样本的次数
>>> np.random.binomial(10, 0.5)
4
>>> np.random.binomial(10, 0.5, 100)
array([6, 5, 7, 3, 3, 7, 7, 4, 6, 4, 3, 5, 5, 4, 4, 3, 5, 3, 6, 5, 7, 5,
       8, 1, 3, 6, 6, 6, 8, 7, 3, 3, 5, 6, 9, 4, 5, 5, 5, 6, 5, 4, 2, 4,
       3, 2, 4, 5, 3, 4, 6, 5, 5, 6, 6, 4, 5, 7, 2, 5, 5, 4, 4, 4, 2, 2,
       4, 3, 4, 5, 5, 5, 5, 5, 4, 4, 4, 9, 4, 4, 5, 4, 6, 5, 5, 5, 6, 5,
       7, 3, 3, 4, 4, 5,
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值