算法设计与分析贪心算法之汽车加油问题

该博客探讨了汽车加油问题,旨在找到使沿途加油次数最少的算法。问题描述涉及一辆能行驶n公里的汽车和k个加油站,要求编程计算最少加油次数。提出的贪心策略是每次加满油后尽可能跑最远距离,如果剩余油量不足以到达下一个加油站才进行加油。文章包括问题定义、算法分析及实现代码。
摘要由CSDN通过智能技术生成

汽车加油问题

问题描述

一辆汽车加满油后可行驶n公里。旅途中有若干个加油站。设计一个有效算法,指出应哪些加油站停靠加油,使沿途加油次数最少。对于给定的n(n <= 5000)和k(k <= 1000)个加油站位置,编程计算最少加油次数。要求:
输入:第一行有2个正整数n和k,表示汽车加满油后可行驶n公里,且旅途中有k个加油站。接下来的1行中,有k+1个整数,表示第k个加油站与第k-1个加油站之间的距离。第0个加油站表示出发地,汽车已加满油。第k+1个加油站表示目的地。
输出:输出编程计算出的最少加油次数。如果无法到达目的地,则输出”No Solution”。
在这里插入图片描述

算法分析

加一次油,跑最远的距离
到达加油站之后,看看剩余的油能否跑到下一个加油站;
能,则不用加油
否则,加油
在这里插入图片描述

代码

#include <iostream>
using namespace std;
int main(){
    int n,k,i;	int *station;
    cout<
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.问题描述 给定一个N*N 的方形网格,设其左上角为起点,坐标为(1,1),X 轴向右为正,Y 轴 向下为正,每个方格边长为1。一辆汽车从起点出发驶向右下角终点,其坐标为(N,N)。 在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油汽车在行驶过程中应遵守 如下规则: (1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在 起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则 免付费用。 (3)汽车在行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为正整数。 算法设计: 求汽车从起点出发到达终点的一条所付费用最少的行驶路线。 数据输入: 输入数据。第一行是N,K,A,B,C的值,2 <= N <= 100, 2 <= K <= 10。第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。 各行相邻的2 个数以空格分隔。 结果输出: 将找到的最优行驶路线所需的费用,即最小费用输出. Sample input 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Sample output 12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值