时间限制: 1.0s
内存限制: 256.0MB
问题描述
小明在玩一个电脑游戏,游戏在一个n×m的方格图上进行,小明控制的角色开始的时候站在第一行第一列,目标是前往第n行第m列。
方格图上有一些方格是始终安全的,有一些在一段时间是危险的,如果小明控制的角色到达一个方格的时候方格是危险的,则小明输掉了游戏,如果小明的角色到达了第n行第m列,则小明过关。第一行第一列和第n行第m列永远都是安全的。
每个单位时间,小明的角色必须向上下左右四个方向相邻的方格中的一个移动一格。
经过很多次尝试,小明掌握了方格图的安全和危险的规律:每一个方格出现危险的时间一定是连续的。并且,小明还掌握了每个方格在哪段时间是危险的。
现在,小明想知道,自己最快经过几个时间单位可以达到第n行第m列过关。
输入格式
输入的第一行包含三个整数n, m, t,用一个空格分隔,表示方格图的行数n、列数m,以及方格图中有危险的方格数量。
接下来t行,每行4个整数r, c, a, b,表示第r行第c列的方格在第a个时刻到第b个时刻之间是危险的,包括a和b。游戏开始时的时刻为0。输入数据保证r和c不同时为1,而且当r为n时c不为m。一个方格只有一段时间是危险的(或者说不会出现两行拥有相同的r和c)。
输出格式
输出一个整数,表示小明最快经过几个时间单位可以过关。输入数据保证小明一定可以过关。
样例输入
3 3 3
2 1 1 1
1 3 2 10
2 2 2 10
样例输出
6
样例说明
第2行第1列时刻1是危险的,因此第一步必须走到第1行第2列。
第二步可以走到第1行第1列,第三步走到第2行第1列,后面经过第3行第1列、第3行第2列到达第3行第3列。
评测用例规模与约定
前30%的评测用例满足:0 < n, m ≤ 10,0 ≤ t < 99。
所有评测用例满足:0 < n, m ≤ 100,0 ≤ t < 9999,1 ≤ r ≤ n,1 ≤ c ≤ m,0 ≤ a ≤ b ≤ 100。
思路
这题其实是迷宫的升级,正常迷宫的墙壁是不会变化的,而这个迷宫是动态迷宫,墙壁会随着
时刻的变化而变化。以前写过一个代码用了另外的一个时间表来存放每个时刻那些点有危险,代码过于复杂。后来看到别人用一个三维数组visited来存数据,x,y是坐标,z是时间。代码简洁很多,所以用三维数组改写了这个代码。
地图在一段时间内是有危险的,那过完这段时间就全部危险都没了,这时候如果在起点,那么到达终点最快的路程是99 + 100 = 199(看样例说明),然后再加上之前危险的时间(最大是100),一共最多用299的时间。所以时间轴的长度设置为299以上,这里坐标因为我从1开始,所以数组长度+1,时间轴我设置成300。
bfs函数思路:每走一步之前判断上下左右4个方向是否有符合条件(行列不越界,且不危险)的位置可以走,可以就入队queue,再把遍历过的位置标1,表示来过。
import java.util.LinkedList;
import java.util.Scanner;
public class 游戏 {
static int[][][] visited;
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int m = input.nextInt();
int t = input.nextInt();
visited = new int[n + 1][m + 1][301];
//设置危险地方
for (int i = 0; i < t; i++) {
int r = input.nextInt();
int c = input.nextInt();
int a = input.nextInt();
int b = input.nextInt();
for (int j = a; j <= b; j++)
visited[r][c][j] = 1;
}
System.out.println(bfs(n, m));
}
static int bfs(int n, int m) {
int[][] direction = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
LinkedList<Node> queue = new LinkedList<>();
queue.offer(new Node(1, 1, 0));
while (!queue.isEmpty()) {
Node tem = queue.poll();
int temLevel = tem.level + 1;
//到达右下角结束
if (tem.x == n && tem.y == m)
return tem.level;
//找上下左右可以走的地方
for (int i = 0; i < direction.length; i++) {
int temX = tem.x + direction[i][0];
int temY = tem.y + direction[i][1];
//行列越界的跳过,遇到危险或以前访问过的跳过。符合条件的就访问,入队
if (temX >= 1 && temY >= 1 && temX <= n && temY <= m && visited[temX][temY][temLevel] != 1) {
//标记入队的位置,防止共同点重复入队
visited[temX][temY][temLevel] = 1;
queue.offer(new Node(temX, temY, temLevel));
}
}
}
return 0;
}
}
class Node {
int x;
int y;
int level;
Node(int x, int y, int level) {
this.x = x;
this.y = y;
this.level = level;
}
}