JZOJ4817. square

2 篇文章 0 订阅

题目大意

给定一个 n×m 的矩阵,其中有一些位置是障碍物。
现在有 T 个询问,每个询问查询一个子矩阵中最大的无障碍正方形边长是多少。

Data Constraint
n,m1000,T1000000

题解

f[i][j] 表示以 (i,j) 为右下角,最大能取到的边长长度。
显然

f[i][j]=min(f[i1][j],f[i][j1],f[i1][j1])+1

然后对于每个询问,我们考虑二分答案。对于当前二分的答案,我们需要查询在一个二维区域内是否存在 f 的值大于等于当前答案。这个可以二维RMQ解决。

注意状态的表达可以优化寻址时间。

时间复杂度:O(T logn)

SRC

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std ;

#define N 1000 + 10
const int MAXN = 10 ;

int a[N][N],  Tab[N] ;
int f[N][N] , g[MAXN][MAXN][N][N] ;
int n , m , Q ;

inline int Max( int x , int y ) { return x > y ? x : y ; }
inline int Min( int x , int y ) { return x < y ? x : y ; }

inline int Read() {
    int ret = 0 ;
    char ch = getchar() ;
    while ( ch < '0' || ch > '9' ) ch = getchar() ;
    while ( ch >= '0' && ch <= '9' ) ret = ret * 10 + ch - '0' , ch = getchar() ;
    return ret ;
}

inline void Write( int x ) {
    if ( x < 10 ) putchar( x + '0' ) ;
    else {
        Write( x / 10 ) ;
        putchar( x % 10 + '0' ) ;
    }
}

inline void Pre() {
    for (int i = 1 ; i <= 1000 ; i ++ ) Tab[i] = log(i) / log(2) ;
    for (int k = 0 ; k < MAXN ; k ++ ) {
        for (int l = 0 ; l < MAXN ; l ++ ) {
            if ( !k && !l ) continue ;
            for (int i = 1 ; i <= n ; i ++ ) {
                for (int j = 1 ; j <= m ; j ++ ) {
                    if ( k ) {
                        if ( g[k-1][l][i][j] > g[k][l][i][j] ) g[k][l][i][j] = g[k-1][l][i][j] ;
                        if ( i - (1 << (k - 1)) > 0 && g[k-1][l][i-(1<<(k-1))][j] > g[k][l][i][j] ) g[k][l][i][j] = g[k-1][l][i-(1<<(k-1))][j] ;
                    }
                    if ( l ) {
                        if ( g[k][l-1][i][j] > g[k][l][i][j] ) g[k][l][i][j] = g[k][l-1][i][j] ;
                        if ( j - (1 << (l - 1)) > 0 && g[k][l-1][i][j-(1<<(l-1))] > g[k][l][i][j] ) g[k][l][i][j] = g[k][l-1][i][j-(1<<(l-1))] ;
                    }
                }
            }
        }
    }
}

inline int Find( int x1 , int y1 , int x2 , int y2 ) {
    int k1 = Tab[x2-x1+1] ;
    int k2 = Tab[y2-y1+1] ;
    int ret = g[k1][k2][x2][y2] ;
    if ( g[k1][k2][x1+(1<<k1)-1][y1+(1<<k2)-1] > ret ) ret = g[k1][k2][x1+(1<<k1)-1][y1+(1<<k2)-1] ;
    if ( g[k1][k2][x1+(1<<k1)-1][y2] > ret ) ret = g[k1][k2][x1+(1<<k1)-1][y2] ;
    if ( g[k1][k2][x2][y1+(1<<k2)-1] > ret ) ret = g[k1][k2][x2][y1+(1<<k2)-1] ;
    return ret ;
}

int main() {
    freopen( "square.in" , "r" , stdin ) ;
    freopen( "square.out" , "w" , stdout ) ;
    n = Read() , m = Read() ;
    for (int i = 1 ; i <= n ; i ++ ) {
        for (int j = 1 ; j <= m ; j ++ ) {
            a[i][j] = Read() ;
            if ( !a[i][j] ) f[i][j] = 0 ;
            else {
                if ( f[i][j-1] < f[i-1][j] ) f[i][j] = f[i][j-1] ;
                else f[i][j] = f[i-1][j] ;
                if ( f[i-1][j-1] < f[i][j] ) f[i][j] = f[i-1][j-1] ;
                f[i][j] ++ ;
            }
            g[0][0][i][j] = f[i][j] ;
        }
    }
    Pre() ;
    Q = Read() ;
    for (int i = 1 ; i <= Q ; i ++ ) {
        int x1 = Read() , y1 = Read() , x2 = Read() , y2 = Read() ;
        int l = 0 , r = Min( y2 - y1 , x2 - x1 ) + 1 , ans = 0 ;
        while ( l <= r ) {
            int mid = (l + r) >> 1 ;
            if ( Find( x1 + mid - 1 , y1 + mid - 1 , x2 , y2 ) >= mid ) l = mid + 1 , ans = mid ;
            else r = mid - 1 ;
        }
        Write( ans ) ;
        putchar( '\n' ) ;
    }
    return 0 ;
}

以上.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值