5034. B

题目大意

给定一棵 n 个点的树,每个点有标号,每次操作可以选择一条边删除,然后重新连一条边。
现在要求,在进行不超过k次操作后,可以构造出多少种不同的树。

Data Constraint
n50

题解

注意到实际上要求的就是最多有不超过 k 条不在原图中的边构成的生成树个数。
如果没有操作,显然就是基础的矩阵树定理。


矩阵树定理

定义一个图G的邻接矩阵为 A 度数矩阵为D
那么它的基尔霍夫矩阵 C=DA
那么这个图所能构造的生成树个数就是 C 的任意一个n1阶余子式(去掉任意一行一列的矩阵行列式)。


考虑如何在这题中运用矩阵树定理。
可以把原图的一棵树看做一个图,如果一条边 (i,j) 存在,那么 Ai,j=1 ,否则就给 Ai,j 赋一个多项式 x ,度数矩阵类似。
然后求余子式,就会得到一个多项式。然后可以发现xk这一项的系数就是恰好有 k 条不在原图中的边的生成树数量。答案显然就是x0~ xk 项的系数之和。
现在问题是如何求出这个多项式。可以给 x n个不同的值,然后做插值求出多项式。
可以用拉格朗日插值实现,我是用高斯消元解的。

时间复杂度: O(n4)

SRC

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<map>
using namespace std ;

#define N 50 + 10
typedef long long ll ;
const int MO = 998244353 ;
struct Note {
    ll x , y ;
    Note ( ll X = 0 , ll Y = 0 ) { x = X , y = Y ; }
} A[N][N] ;

bool flag[N] , Map[N][N] ;
int g[N][N] , Xi[N] , Yi[N] ;
int n , m , Sig ;
ll ans ;

Note operator - ( Note a , Note b ) { return Note( (a.x - b.x + MO) % MO , (a.y - b.y + MO) % MO ) ; }

int Power( int x , int k ) {
    int s = 1 ;
    while ( k ) {
        if ( k & 1 ) s = (ll)s * x % MO ;
        x = (ll)x * x % MO ;
        k /= 2 ;
    }
    return s ;
}

void Gauss( int n , int m ) {
    memset( flag , 0 , sizeof(flag) ) ;
    for (int i = 1 ; i <= n ; i ++ ) {
        int wz = 0 ;
        for (int j = 1 ; j <= n ; j ++ ) {
            if ( flag[j] ) continue ;
            if ( g[j][i] ) {
                wz = j ;
                break ;
            }
        }
        if ( !wz ) continue ;
        if ( wz != i ) {
            swap( g[wz] , g[i] ) ;
            Sig *= -1 ;
        }
        flag[i] = 1 ;
        int Ni = Power( g[i][i] , MO - 2 ) ;
        for (int j = 1 ; j <= n ; j ++ ) {
            if ( i == j || !g[j][i] ) continue ;
            int d = (ll)g[j][i] * Ni % MO ;
            for (int k = 1 ; k <= m ; k ++ ) {
                g[j][k] = ((g[j][k] - (ll)g[i][k] * d % MO) % MO + MO) % MO ;
            }
        }
    }
}

int Calc( int x ) {
    for (int i = 1 ; i < n ; i ++ ) {
        for (int j = 1 ; j < n ; j ++ ) {
            g[i][j] = (A[i][j].x * x % MO + A[i][j].y) % MO ;
        }
    }
    Sig = 1 ;
    Gauss( n - 1 , n - 1 ) ;
    int ret = 1 ;
    for (int i = 1 ; i < n ; i ++ ) ret = (ll)ret * g[i][i] % MO ;
    return ret * Sig ;
}

int main() {
    freopen( "b.in" , "r" , stdin ) ;
    freopen( "b.out" , "w" , stdout ) ;
    scanf( "%d%d" , &n , &m ) ;
    m = min( m , n - 1 ) ;
    for (int i = 2 ; i <= n ; i ++ ) {
        int f ;
        scanf( "%d" , &f ) ;
        f ++ ;
        Map[f][i] = Map[i][f] = 1 ;
    }
    for (int i = 1 ; i <= n ; i ++ ) {
        for (int j = 1 ; j <= n ; j ++ ) {
            if ( i == j ) continue ;
            if ( Map[i][j] ) A[i][j] = Note( 0 , MO - 1 ) ;
            else A[i][j] = Note( MO - 1 , 0 ) ;
            A[i][i] = A[i][i] - A[i][j] ;
        }
    }
    for (int i = 0 ; i < n ; i ++ ) {
        Xi[i] = i ;
        Yi[i] = Calc(i) ;
    }
    for (int i = 1 ; i <= n ; i ++ ) {
        int s = 1 ;
        for (int j = 1 ; j <= n ; j ++ ) {
            g[i][j] = s ;
            s = (ll)s * Xi[i-1] % MO ;
        }
        g[i][n+1] = Yi[i-1] ;
    }
    Gauss( n , n + 1 ) ;
    for (int i = 1 ; i <= m + 1 ; i ++ )
        ans = (ans + (ll)g[i][n+1] * Power( g[i][i] , MO - 2 ) % MO) % MO ;
    printf( "%lld\n" , ans ) ;
    return 0 ;
}

以上.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值