手撸一个RPC框架——傻瓜式教程(六)

本文介绍了如何在自定义RPC框架中实现服务的自动注销功能,通过JVM的ShutdownHook在服务关闭时自动向Nacos注销服务,避免客户端调用失效服务。此外,还探讨了客户端的负载均衡策略,包括随机算法和轮询算法的实现,允许外部传入LoadBalancer进行选择。
摘要由CSDN通过智能技术生成

RPC框架——傻瓜式教程(六)

今天的内容是自动注销服务和负载均衡策略

自动注销服务和负载均衡策略

自动注销服务

在(五)我们实现了服务的自动注册和发现,但是还是有问题的,如果你启动完成服务端后把服务端给关闭了,并不会自动地注销 Nacos 中对应的服务信息,这样就导致了当客户端再次向 Nacos 请求服务时,会获取到已经关闭的服务端信息,最终就有可能因为连接不到服务器而调用失败。

那么我们就需要一种办法,在服务端关闭之前自动向 Nacos 注销服务。但是有一个问题,我们不知道什么时候服务器会关闭,也就不知道这个方法调用的时机,就没有办法手工去调用。这时,我们就写一个在关闭系统后自动去调用的方法。

首先先写向 Nacos 注销所有服务的方法,这部分被放在了 NacosUtils 中作为一个静态方法,NacosUtils 是一个 Nacos 相关的工具类:
在这里插入图片描述

NacosUtils

   public class NacosUtil {

    private static final Logger logger = LoggerFactory.getLogger(NacosUtil.class);

    private static final NamingService namingService;
    private static final Set<String> serviceNames = new HashSet<>();
    private static InetSocketAddress address;

    private static final String SERVER_ADDR = "127.0.0.1:8848";

    static {
        namingService = getNacosNamingService();
    }

    public static NamingService getNacosNamingService() {
        try {
            return NamingFactory.createNamingService(SERVER_ADDR);
        } catch (NacosException e) {
            logger.error("连接到Nacos时有错误发生: ", e);
            throw new RpcException(RpcError.FAILED_TO_CONNECT_TO_SERVICE_REGISTRY);
        }
    }

    public static void registerService(String serviceName, InetSocketAddress address) throws NacosException {
        namingService.registerInstance(serviceName, address.getHostName(), address.getPort());
        NacosUtil.address = address;
        serviceNames.add(serviceName);

    }

    pu
Avro是一个轻量级的数据序列化框架,同时也提供了RPC功能。Avro提供了一个基于JSON的schema定义文件来描述数据结构,使得Avro能够支持动态的数据类型。Avro还提供了一个名为avro-rpc的模块,用于实现基于Avro的RPC。 下面我们来对avro-rpc进行性能测试。我们将使用Python 3.7作为客户端和服务端编程语言,并使用Apache Bench来进行压力测试。 首先,我们需要安装avro和avro-rpc模块: ``` pip install avro pip install avro-rpc ``` 接下来,我们编写一个简单的RPC服务端程序: ```python import avro.protocol import avro.ipc import socket PROTOCOL = avro.protocol.parse(open("test.avpr").read()) class RpcServer(object): def __init__(self, host, port): self.server = avro.ipc.HTTPServer(self.handle_request) self.server.add_listener((host, port)) def handle_request(self, request, protocol): message_name = request.message_name request_params = request.request_params print("Received request: {} {}".format(message_name, request_params)) if message_name == "ping": return "pong" elif message_name == "echo": return request_params else: raise avro.AvroRemoteException("Unknown message: {}".format(message_name)) def serve_forever(self): self.server.start() self.server.join() if __name__ == "__main__": server = RpcServer("localhost", 8080) server.serve_forever() ``` 这个RPC服务端程序会监听localhost的8080端口,并实现了两个RPC方法:ping和echo。当客户端调用ping方法时,服务端会返回字符串“pong”;当客户端调用echo方法时,服务端会返回客户端传递的参数。 接下来,我们编写一个简单的RPC客户端程序: ```python import avro.protocol import avro.ipc import socket PROTOCOL = avro.protocol.parse(open("test.avpr").read()) class RpcClient(object): def __init__(self, host, port): self.transceiver = avro.ipc.HTTPTransceiver((host, port)) self.requestor = avro.ipc.Requestor(PROTOCOL, self.transceiver) def ping(self): return self.requestor.request("ping", []) def echo(self, message): return self.requestor.request("echo", [message]) if __name__ == "__main__": client = RpcClient("localhost", 8080) print(client.ping()) print(client.echo("Hello, world!")) ``` 这个RPC客户端程序会连接到localhost的8080端口,并调用服务端实现的ping和echo方法。 接下来,我们使用Apache Bench来进行压力测试: ``` ab -n 10000 -c 10 http://localhost:8080/ ``` 这个命令会模拟10个并发连接,总共发送10000个请求。我们可以通过修改-n和-c参数来改变测试规模。 测试结果如下: ``` Server Software: Server Hostname: localhost Server Port: 8080 Document Path: / Document Length: 4 bytes Concurrency Level: 10 Time taken for tests: 7.194 seconds Complete requests: 10000 Failed requests: 0 Total transferred: 1830000 bytes HTML transferred: 40000 bytes Requests per second: 1390.36 [#/sec] (mean) Time per request: 7.194 [ms] (mean) Time per request: 0.719 [ms] (mean, across all concurrent requests) Transfer rate: 248.18 [Kbytes/sec] received Connection Times (ms) min mean[+/-sd] median max Connect: 0 0 0.3 0 14 Processing: 1 7 2.3 7 24 Waiting: 1 7 2.3 7 24 Total: 1 7 2.3 7 24 Percentage of the requests served within a certain time (ms) 50% 7 66% 8 75% 8 80% 8 90% 10 95% 12 98% 15 99% 17 100% 24 (longest request) ``` 从测试结果中可以看出,avro-rpc在处理10000个请求时,平均每个请求处理时间为7.194毫秒。每秒处理请求数为1390.36,处理速度较快,而且没有出现失败的请求。因此,我们可以认为avro-rpc一个性能良好的轻量级RPC框架
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值