TensorFlow入门--张量的定义与基本运算
一、生成张量 - Variable 、constant 与placeholder 方法
编程要求:
- 根据提示,在右侧编辑器补全sum函数,参数 a 是 Variable,参数 b 是 constant,记 value 为 b 的值。
- 你需要计算从1+…+value的值,并将其结果存储在a节点中。
提示:
- 获取张量的值可以使用eval()方法。
- 对变量赋值需要使用tf.assign()系列函数,注意TensorFlow的操作都要在使用Session.run()或eval()方法后才会生效。
- 可以先获取参数b的值value,之后使用一个循环计算1+…+value的值,并将其结果使用tf.assign()函数存储在a节点中。
测试说明:
平台会对你编写的代码进行测试:
- 测试输入:10 预期输出:45
- 测试输入:9 预期输出:36
本关任务:
- 利用TensorFlow中的变量 (Variable类) 编写一个能计算表达式1+…+…+n的值的小程序
(n的值由TensorFlow中的常量constant类给出) - 对变量赋值需要使用tf.assign()系列函数,注意TensorFlow的操作都要在使用Session.run()或eval()方法后才会生效。
- 可以先获取参数b的值value,之后使用一个循环计算1+…+value的值,并将其结果使用tf.assign()函数存储在a节点中
。
# -*- coding: utf-8 -*-
import tensorflow as tf
# 参数 a 是 Variable, 参数 b 是 constant, 记 value 为 b 的值
# 计算从1+..+value的值, 并将其存储在a节点中
def sum(a,b):
# 请在此添加代码 完成本关任务
# ********** Begin *********#
tf.assign(a,tf.constant(0)).eval()
i=1
while i<b.eval():
tf.assign_add(a,tf.constant(i)).eval()
i=i+1
# ********** End **********#
二、全0张量与全1张量的生成 - zeros方法和ones方法
# -*- coding: utf-8 -*-
import tensorflow as tf
# 输入参数 n 为一正整数 (大于1且小于100)
# 若 n 为偶数, 则返回形状为 [n+1,n-1] 的全0矩阵
# 若 n 为奇数, 则返回形状为 [n-1,n+1] 的全1矩阵
def getMatrix(n):
# 请在此添加代码 完成本关任务
# ********** Begin *********#
if (n%2)==0:
return (tf.zeros([n+1, n-1], tf.float32))
else:
return (tf.ones([n-1, n+1], tf.float32))
# ********** End **********#
三、生成带指定初值的张量 - fill方法
# -*- coding: utf-8 -*-
import tensorflow as tf
# 输入参数x为正整数,y为整数
# 需要生成一个所有元素初值均为y, 形状为x*x的矩阵
# 之后在将矩阵的对角线上的每个元素加1
# 然后若该矩阵有逆矩阵, 则返回该逆矩阵的行列式
# 否则返回0
def getMatrix(x,y):
# 请在此添加代码 完成本关任务
# ********** Begin *********#
a = tf.fill([x,x],y)
# 生成一个全1
v2 = tf.ones([x])
v1 = tf.diag(v2)
a = tf.cast(a, tf.float32)
v1 = tf.cast(v1, tf.float32)
b = a + v1
if tf.linalg.det(b)!= 0:
return tf.linalg.det(tf.matrix_inverse(b)).eval()
else:
return 0
# ********** End **********#
总结
本文章转载自头歌教育实践作业,若有侵权请告知必删