目录
【问题描述】
把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包含数字 2 和 4,
一共有多少种不同的分解方法?
注意交换 3 个整数的顺序被视为同一种方法,例如 1000+1001+18 和 1001+1000+18 被视为同一种。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,
在提交答案时只填写这个整数,填写多余的内容将无法得分。
代码
我们只需要注意i的最大值,j的起始值,i<j<k即可
1)其次,注意题目条件--i,j,k互不相同
2)数字中不可包括2,4
#include<iostream>
using namespace std;
bool judge(int i, int j, int k)
{
if (i == j || i == k || j == k) return false;
int temp;
bool flag = true;
while (i)
{
temp = i % 10;
if (temp == 2 || temp == 4) return false;
i = i / 10;
}
while (j)
{
temp = j % 10;
if (temp == 2 || temp == 4) return false;
j = j / 10;
}
while (k)
{
temp = k % 10;
if (temp == 2 || temp == 4) return false;
k = k / 10;
}
return true;
}
int fenjie(int target)
{
int count = 0;
for (int i = 1; i <= target / 3; ++i)
{
for (int j = i; j <=(target-i)/2 ; ++j)
{
for (int k = j; k <= target; k++)
{
if (i + j + k == target&&judge(i,j,k)) {
cout<<"i:"<<i<<",j="<<j<<",k="<<k<<endl;
count++;
}
else continue;
}
}
}
return count;
}
int main()
{
int target;
cin >> target;
int count = fenjie(target);
cout << "count=" << count;
return 0;
}
对于起始值target而言:
target如果是三的倍数(三个数字不能有相同):
i的最大值:target/3-1
j的最小值:target/3+1
k的最小值:target/3+2
target如果是三的倍数+1(前提同上)
i的最大值:target/3-1
j的最小值:target/3
k的最小值:target/3+1
target如果是三的倍数+2(前提同上)
i的最大值:target/3-1
j的最小值:target/3
k的最小值:target/3+2
我们观察上面三种情况就会发现我们令k=j+1的情况其实在第三种中不是合理的,但是没有关系,反正呢最后也会因为数值累加后没有到target,直接跳入下一次循环.