机器学习:优化方法

以下是一些常用的最优化方法,它们在机器学习和深度学习中经常被应用:

梯度下降法 (Gradient Descent):

梯度下降法是机器学习中常用的优化算法,用于最小化(或最大化)一个损失函数。以下是梯度下降法的基本原理和步骤:

  1. 目标函数: 假设有一个目标函数(损失函数),通常表示为 J(\theta),其中 \theta 是模型的参数。

  2. 初始参数: 随机或根据某些启发式方法初始化模型参数 \theta

  3. 计算梯度: 计算目标函数关于参数 \theta 的梯度(导数)。梯度表示目标函数在当前参数值处的变化方向。

    \triangledown J(\theta)=[\frac{\partial J}{\partial \theta _{1}},\frac{\partial J}{\partial \theta _{2}},...,\frac{\partial J}{\partial \theta _{n}}]

  4. 参数更新: 使用梯度的反方向来更新参数,以减小目标函数值。学习率(\alpha)是一个超参数,控制每次参数更新的步长。

    \theta =\theta -\alpha \triangledown J(\theta )

  5. 迭代: 重复步骤 3 和 4 直到满足停止准则,如达到最大迭代次数、目标函数变化小于某个阈值等。

梯度下降法有三种常见的变体

  • 批量梯度下降 (Batch Gradient Descent): 在整个训练集上计算梯度,更新参数。适用于小型数据集,但可能计算代价高。

  • 随机梯度下降 (Stochastic Gradient Descent, SGD): 在每个训练样本上计算梯度,并更新参数。速度快但可能不稳定。

  • 小批量梯度下降 (Mini-batch Gradient Descent): 每次更新使用一个小批量的训练样本。综合了批量和随机梯度下降的优点,是常用的方法

特点和适用性 

  • 数学简单: 算法相对简单,易于理解和实现,尤其是批量梯度下降。

  • 大规模数据集: 批量梯度下降对大规模数据集的适应性较差,因为在每次迭代中需要计算整个数据集的梯度,代价较高。随机梯度下降和小批量梯度下降通常更适合大规模数据。

  • 凸函数: 梯度下降在凸函数的情况下保证能够收敛到全局最小值。对于凸优化问题,梯度下降通常是一个可行的选择。

  • 不可微函数: 当损失函数不是处处可微的时候,梯度下降可能会遇到困难。对于不可微分的情况,可以考虑使用次梯度法等方法。

  • 超参数调优: 对于学习率等超参数的选择敏感。需要进行仔细的调优,过小的学习率可能导致收敛速度慢,而过大的学习率可能导致震荡或无法收敛。

  • 局部最优解: 存在被困在局部最优解的风险,特别是对于非凸问题。随机初始化、多次运行、以及其他优化算法可以帮助克服这个问题。

Adam:

Adam(Adaptive Moment Estimation)是一种优化算法,常用于机器学习和深度学习中。它结合了动量法和自适应学习率的思想,旨在在不同参数方向上为每个参数提供不同的学习率,并且具有动量项,有助于加速收敛。以下是Adam算法的详细解释:

  1. 梯度计算: 在每个迭代步骤中,计算目标函数关于参数的梯度。

  2. 动量项(Momentum): Adam引入了动量项,类似于动量法,以保持在更新方向上的惯性。动量项 m_{t} 在每次迭代中按照以下规则更新:

    ·m_{_{t}}=\beta _{i}\cdot m_{t-1}+(1-\beta _{1})\cdot \triangledown J_{t}

    其中,\beta _{1}是动量的衰减系数(通常接近于1),\triangledown J_{t}是当前迭代的梯度。

  3. 自适应学习率(Adaptive Learning Rate): Adam使用了每个参数自适应的学习率。引入了一个梯度平方的指数移动平均项 v_{t}

    v_{t} = \beta _{2}\cdot v_{t-1}+(1-\beta_{2})\cdot (\triangledown J_{t})^{2}

    其中,\beta _{2} 是梯度平方项的衰减系数。

  4. 参数更新: 更新每个参数 \theta

    \theta _{t} = \theta _{t-1}-\frac{\alpha}{\sqrt{v _{t}+\epsilon}}\cdot m _{t}

    其中,\alpha 是学习率,\epsilon 是为了数值稳定性而添加的小常数。

超参数:

  • \alpha:学习率,控制每次参数更新的步长。通常可以使用较小的默认值,如0.001。对学习率进行调整时,可通过学习率衰减或其他自适应方法来进一步优化。
  • \beta _{1}​:动量项的衰减系数。一般设为接近1的值,例如0.9。较小的值会使动量项变化更加平缓,更快地适应变化。
  • \beta _{2}:梯度平方项的衰减系数。通常设为接近1的值,例如0.999。与\beta _{1}类似,较小的值使梯度平方项的变化更平缓。
  • \epsilon :数值稳定性常数。通常使用一个较小的值,例如1\times 10 ^{-8},以防止分母为零。

特点和适用性:

  • Adam适用于各种深度学习任务和模型,通常对超参数不敏感,因此无需经常微调。

  • 具有自适应学习率的特性,可以适应每个参数的不同尺度,减少了手动调整学习率的需求。

  • 动量项有助于克服梯度下降中的局部最小值,并在参数更新方向上保持稳定性。

  • 虽然Adam在许多情况下表现良好,但并非适用于所有问题。在某些情况下,其他优化算法(如SGD、RMSprop)也可能表现得更好。

Adagrad:

Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,常用于机器学习和深度学习中。它的主要特点是根据参数的历史梯度信息来自适应地调整学习率,对稀疏数据的处理效果较好。以下是Adagrad的深入了解:

基本原理:

  1. 梯度平方累积: Adagrad维护一个参数的历史梯度平方的累积项。对于参数 \theta,其梯度 g _{t,i} 在时间步 t 的梯度平方累积为 G _{t,i}=G _{t-1,i} + (g _{t,i}) ^{2}

  2. 学习率调整: Adagrad使用参数的历史梯度平方累积项来调整学习率。在更新参数时,学习率会被除以梯度平方项的平方根:

    \theta _{t+1,i}=\theta _{t,i}-\frac{\alpha }{\sqrt{G _{t,i}+\epsilon}}\cdot g _{t,i}

    其中,\alpha 是初始学习率,\epsilon 是为了数值稳定性而添加的小常数。

特点和适用性:

  • 自适应学习率: Adagrad具有自适应学习率的特性,对于每个参数,学习率会根据其历史梯度的平方进行调整。这使得对于稀疏梯度的参数,学习率相对较大;而对于频繁出现的梯度较小的参数,学习率相对较小。

  • 适用性: Adagrad适用于非凸、凸优化问题,尤其在处理稀疏数据时效果较好。由于学习率自适应,不需要手动调整学习率。

  • 历史信息积累: Adagrad在更新中考虑了参数的历史梯度信息,这有助于在训练中更灵活地调整学习率,但也可能导致学习率过早下降。

注意事项:

  • 累积效应: 由于梯度平方的累积,学习率可能在训练早期较大,但随着时间的推移逐渐减小。这可能导致后期训练时学习率过小,降低收敛速度。

  • 分母项稳定性: 当梯度平方项累积到较大时,分母项可能变得很大,导致学习率过小。为了稳定性,通常会添加一个小的常数 \epsilon 防止分母为零。

尽管Adagrad在一些问题上表现得很好,但也有一些问题,例如累积效应可能导致学习率过早下降。出于这个原因,后续算法如RMSprop和Adam在Adagrad的基础上做了改进。

RMSprop (Root Mean Square Propagation):

RMSprop(Root Mean Square Propagation)是一种自适应学习率的优化算法,用于梯度下降。它是对 Adagrad 算法的改进,主要通过引入梯度平方项的移动平均来调整学习率。以下是对RMSprop的深入了解:

基本原理:

  1. 梯度平方项的移动平均: RMSprop维护一个参数的历史梯度平方项的移动平均。对于参数 \theta _{i},其梯度 g _{t,i}在时间步 t 的梯度平方项的移动平均为 E[g ^{2}] _{t}=\beta G _{t-1}+(1-\beta )g_{t,i}^{2}​,其中 0<\beta <1 是移动平均的衰减率。

  2. 学习率调整: RMSprop使用参数的历史梯度平方项的移动平均来调整学习率。在更新参数时,学习率会被除以梯度平方项的平方根:

    \theta _{t+1,i}=\theta _{t,i}-\frac{\alpha }{\sqrt{E[g^{2}]+\epsilon }}\cdot g_{t,i}

    其中,\alpha是初始学习率,\epsilon 是为了数值稳定性而添加的小常数。

特点和适用性:

  • 自适应学习率: RMSprop具有自适应学习率的特性,根据每个参数的历史梯度平方项调整学习率。这使得对于每个参数,学习率相对较大的参数会得到更小的学习率,而相对较小的参数会得到更大的学习率。

  • 适用性: RMSprop适用于非凸、凸优化问题,对稀疏梯度的参数有较好的处理效果。

  • 历史信息积累: RMSprop在更新中考虑了参数的历史梯度平方项的移动平均,这有助于在训练中更灵活地调整学习率,但也可能导致学习率过早下降。

注意事项:

  • 衰减率 \beta 的选择: 衰减率 \beta的选择影响着历史信息的积累程度,通常取接近1的值,如0.9。

  • 分母项稳定性: 当梯度平方项的移动平均累积到较大时,分母项可能变得很大,导致学习率过小。为了稳定性,通常会添加一个小的常数 \epsilon 防止分母为零。

RMSprop在一些问题上表现得比Adagrad更好,特别是在处理非平稳目标函数和数据的情况下。然而,在某些情况下,可能会被更新的算法(如Adam)所取代。

Momentum (动量法):

Momentum是一种梯度下降的优化算法,通过引入动量项来改进传统的梯度下降。它的目标是解决梯度下降在参数空间中出现的局部最小值、鞍点等问题。以下是对Momentum的深入了解:

基本原理:

  1. 动量项: Momentum引入一个动量项,用来模拟物体在参数空间中的惯性。在每个时间步 t,动量 vt​ 的更新规则为:

    v=\beta v_{t-1}+(1-\beta )g_{t}

    其中,g_{t}​ 是当前时间步的梯度,\beta 是动量项的衰减率,通常取接近1的值,如0.9。

  2. 参数更新: 使用动量项来更新参数。在每个时间步 t,参数 \theta _{t} 的更新规则为:

    \theta _{t+1}=\theta _{t}-\alpha v_{t}

    其中,\alpha 是学习率。

特点和适用性:

  • 动量效应: 动量项具有一定的“惯性”,有助于平滑参数更新方向,减缓在参数空间中的震荡,特别是在平坦的、弯曲的或带有噪声的损失表面上。

  • 适用性: Momentum适用于各种凸和非凸优化问题,对于深度学习中大规模神经网络的训练有显著帮助。

  • 参数空间跳跃: Momentum可以帮助算法在参数空间中更快地跳过局部最小值或鞍点,有助于加速收敛。

注意事项:

  • 衰减率 \beta 的选择: 衰减率 \beta 的选择影响动量项的权重,通常取接近1的值,如0.9。

  • 学习率 \alpha 的选择: Momentum不同于传统梯度下降,对学习率的选择并不那么敏感。通常,较小的学习率可以提高稳定性。

  • 初始动量: 初始时,动量项 v_{0}​ 通常初始化为零,但也可以根据实际问题进行调整。

Momentum是梯度下降优化算法中的经典方法,对于一些具有挑战性的优化问题,特别是在深度学习中,它在实践中表现出色。

Adadelta:

Adadelta是一种自适应学习率的优化算法,旨在解决学习率逐渐减小的问题,提高算法的稳定性。以下是对Adadelta的深入了解:

基本原理:

  1. 梯度平方项的移动平均: Adadelta类似于RMSprop,也使用了梯度平方项的移动平均。对于参数 \theta _{i}​,其梯度 g_{t,i} 在时间步 t 的梯度平方项的移动平均为 E[g^{2}]_{t}=\rho E[g^{2}]_{t-1}+(1-\rho )g_{t,i}^{2},其中 0<\rho <1 是移动平均的衰减率。

  2. 学习率调整: Adadelta使用梯度平方项的移动平均来调整学习率。在更新参数时,学习率会被除以梯度平方项的平方根,并引入参数的移动平均的平方根项:

    \theta _{t+1,i}=\theta _{t,i}-\frac{\sqrt{E[\Delta \theta ^{2}]_{t-1}+\epsilon }}{E[g^{2}]_{t}+\epsilon }\cdot g_{t,i}

    其中,\epsilon 是为了数值稳定性而添加的小常数。

  3. 参数的移动平均: Adadelta还维护了参数更新项的移动平均。对于参数 \theta _{i},其更新项 \Delta _{t,i}在时间步 t 的移动平均为 E[\Delta \theta ^{2}]_{t}=\rho E[\Delta \theta ^{2}]_{t-1}+(1-\rho )(\Delta \theta _{t,i})^{2}

特点和适用性:

  • 自适应学习率: Adadelta具有自适应学习率的特性,对每个参数的历史梯度平方项和参数更新项进行调整学习率。

  • 无需手动调整学习率: Adadelta无需手动调整初始学习率,对于稀疏梯度的问题有较好的表现。

  • 适用性: Adadelta适用于非凸、凸优化问题,对于学习率的选择相对较鲁棒。

注意事项:

  • 衰减率 \rho 的选择: 衰减率 \rho 的选择影响移动平均的积累程度,通常取接近1的值,如0.9。

  • 初始移动平均: 初始时,梯度平方项的移动平均和参数更新项的移动平均通常初始化为零,但也可以根据实际问题进行调整。

Adadelta在一些问题上表现得很好,特别是对于那些需要更多稳定性的优化问题。然而,在某些情况下,其他自适应学习率的算法(如Adam)可能被选择。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值