分别用二分法和牛顿迭代法求解方程x3 – 3x – 1 = 0在x = 2附近的实根(c++实现)

该博客详细介绍了如何使用二分法和牛顿迭代法求解方程x3-3x-1=0在x=2附近的实根,直至达到小数点后7位的精确度。首先,定义了二分法的迭代区间[1,3],通过不断缩小区间来逼近根。然后,应用牛顿迭代法从起点4开始迭代,直到满足精度要求。最后,将两种方法的近似结果与理论值2cos20进行误差比较,展示了两种数值求解方法的效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题引入

编写程序,分别用二分法和牛顿迭代法求解方程x3 – 3x – 1 = 0在x = 2附近的实根,要求计算精确到小数点后7 位数字为止,并将求出的近似结果与理论值2cos20 比较误差大小。
设二分法的初始迭代区间为 [1, 3],牛顿迭代法的起点为4。

二分法

任取两点x1和x2,判断(x1,x2)区间内有无一个实根。如果f(x1)和f(x2)符号相反,说明(x1,x2)之间有一个实根。取(x1,x2)的中点x,检查f(x)与f(x1)是否同符号,如果不同号,说明实根在(x,x1)区间,这样就已经将寻找根的范围减少了一半了。
然后用同样的办法再进一步缩小范围。再找x1与x2(x2=x)的中点“x”,并且再舍弃其一半区间。如果f(x)与f(x1)同号,则说明根在(x,x2)区间,再取x与x2的中点,并舍弃其一半区间。用这个办法不断缩小范围,直到区间相当小为止。

//二分法近似
bool Dichotomy() {
	double max = 3;
	double min = 1;
	double mid = (max + min) / 2;
	if (func(mid) == 0) {
		;
	}
	else {
		while (abs(func(mid)) > p) {//int abs(int i);返回整型参数i的绝对值,用来判断精度是否达到要求
			if (func(mid) * func(min) > 0) {
				min = mid;
			}
			else {
				max = mid;
			}
			mid = (max + min) / 2;
		}
	}
	cout << "二分法近似结果:" <<setprecision(8) <<mid << endl;
	return true;
}

牛顿迭代法

用牛顿迭代法求f(x)方法
1 用一个与原方程的近似方程,去求解近似根appro;
2 再通过x1求出f(x1)
3用切线公式destination = iter - actual / appro使最终结果逐渐逼近原根。

在几何上就是作线x=x1,交f(x)于f(x1);
过f(x1)作f(x)的切线,交x轴于x2。可以用公式求出x2,通过x2求出f(x2);…一直求下去,直到接近真正的根。当两次求出的根之差|xn+1-xn|≤ε就认为 xn+1足够接近于真实根。

//牛顿法近似
 bool Newton() {
		double appro, actual, iter, destination = 4;
		do {
			iter = destination;
			appro = 3 * iter * iter - 3;//近似方程
			actual = iter * iter * iter - 3 * iter - 1;//实际方程
			destination = iter - actual / appro;//用最终结果去减两个方程的商,逐渐迭代
		} while (abs(iter - destination) > p);
		cout<<"牛顿法近似结果:"<< setprecision(8)<< destination<<endl;
		return true;
}

时空复杂度分析

二分法
算法为一重循环,循环次数和精度有关; 空间上只占用了三个临时变量为常数阶。
时间复杂度为O(n),空间复杂度为O(1)。

牛顿迭代法
算法也为一重循环,循环次数和精度有关; 空间上占用了四个临时变量为常数阶。
时间复杂度为O(n),空间复杂度为O(1)。

附录–完整代码块

#include<iostream>
#include<cmath>
#include<iomanip>
#define  PI 3.1415926 //假定PI值
using namespace std;

//用来精确7位小数
double p = 1e-7;

//二分法近似的方程表达式
double func(double x)
	{
		return x * x * x - 3 * x - 1;
	}
//二分法近似
bool Dichotomy() {
	double max = 3;
	double min = 1;
	double mid = (max + min) / 2;
	if (func(mid) == 0) {
		;
	}
	else {
		while (abs(func(mid)) > p) {//int abs(int i);返回整型参数i的绝对值,用来判断精度是否达到要求
			if (func(mid) * func(min) > 0) {
				min = mid;
			}
			else {
				max = mid;
			}
			mid = (max + min) / 2;
		}
	}
	cout << "二分法近似结果:" <<setprecision(8) <<mid << endl;
	return true;
}

//牛顿法近似
 bool Newton() {
		double appro, actual, iter, destination = 4;
		do {
			iter = destination;
			appro = 3 * iter * iter - 3;//近似方程
			actual = iter * iter * iter - 3 * iter - 1;//实际方程
			destination = iter - actual / appro;//用最终结果去减两个方程的商,逐渐迭代
		} while (abs(iter - destination) > p);
		cout<<"牛顿法近似结果:"<< setprecision(8)<< destination<<endl;
		return true;
}

int main() {
		cout<<"2cos20 " <<" = " << setprecision(8) << 2 * cos(PI / 9)<<endl;//注意cos的传入值是弧度制
		Dichotomy();
		Newton();
		return 0;
	}
1. 目的: (1)通过采用牛顿迭代、弦截二分法的程序设计,使学生更加系统地理解掌握C语言函数间参数传递方、数组指针的应用等编程技巧。培养学生综合利用C语言进行科学计算,使学生将所学知识转化为分析设计数学中的实际问题的能力,学会查资料工具书。 (2)提高学生建立程序文档、归纳总结的能力。 (3)进一步巩固灵活运用先修课程《计算机文化基础》有关文字处理、图表分析、数据归整、应用软件之间图表、数据共享等信息技术处理的综合能力。 2. 基本要: (1)要用模块化设计C语言的思想来完成程序的设计; (2)要分别编写牛顿迭代、弦截二分法的函数,分别存到不同的.CPP文件中; (3)在VC++6.0环境中,学会调试程序的方,及时查究错误,独立调试完成。 (4)程序调试通过后,完成程序文档的整理,加必要的注释。 一般解一元方程,常用采用的方有:牛顿迭代、弦截二分法等。 牛顿迭代 〖〖f(x)=a〗_0 x〗^n 〖〖 + a〗_1 x〗^(n-1) +⋯+〖 a〗_(n-2) x^2 +〖 a〗_(n-1) x +〖 a〗_n=0 f(x)在〖 x〗_0附近。 计算公式:〖 x〗_(n+1)=〖 x〗_n- f(〖 x〗_n )/(f(〖 x〗_n)) ́ 精度:ε=|〖 x〗_(n+1)-〖 x〗_n|<1.0e-m ,m=6。 牛顿迭代:满足精度的〖 x〗_n 二分法 任取两点〖 x〗_1〖 x〗_2,判断(〖 x〗_1, 〖 x〗_2)有无实根。如下图所示,如果f(〖 x〗_1 )f(〖 x〗_2 )符号相反,说明(〖 x〗_1, 〖 x〗_2)之间有一实根。取(〖 x〗_1, 〖 x〗_2)的中点x,检查f(x)f(〖 x〗_1 )是否同符号,如果不同号,说明实根在(〖 x〗_1,x)区间,x作为新的〖 x〗_2,舍弃(x, 〖 x〗_2区间;若同号,则实根在(x, 〖 x〗_2区间,x作为新的〖 x〗_1, 舍弃(〖 x〗_1,x)区间。再据新的〖 x〗_1 、 〖 x〗_2,找中点,重复上述步骤。直到|〖 x〗_1-〖 x〗_2|〖<10〗^(-6)时,x =(〖 x〗_1+〖 x〗_2)/2为所。 (3)弦截 取f(〖 x〗_1 )与f(〖 x〗_2 )连线与x轴的交点x,从(〖 x〗_1, x)(x, 〖 x〗_2)两个区间中取舍的方二分法相同。 计算公式为: 判断f(〖 x〗_1 )与f(〖 x〗_2 )是否同符号的方二分法采用的方相同。直到先后两次出的x的值之差小于〖10〗^(-6)为止。 分别用牛顿迭代、弦截二分法下列方程,分析比较各种方的迭代次数及精度。 〖f(x)=x〗^3- 2x〗^2 +7x +4=0 牛顿迭代的初值:x=0.5; 弦截〖 x〗_1,〖 x〗_2的初值:-11 二分法〖 x〗_1,〖 x〗_2的初值:-10 精度要:|〖 x〗_1-〖 x〗_2| 〖<10〗^(-6)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlbertOS

还会有大爷会打钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值