数学与统计学院
《数值分析》课程实验设计
实验名称 方程求根的二分法和迭代法
【实验目的】 (1)掌握二分法和简单迭代法的基本思想;
(2)通过编程实现二分法和简单迭代法,比较两种算法求根的计算量。
(3)需要注意的是计算过程中如何判断根的准确度。
【实验设备及环境】 计算机、VC6.0
【预备知识】 1、二分法的计算步骤
步骤:
(1)计算在有根区间[a,b]端点处的值;
(2)计算在区间中点处的值;
(3)若=0,则即为根,计算过程结束,否则检验:若,则以代替b,否则以代替;
(4)反复执行步骤(2)和(3),直到区间[a,b]的长度的一半小于允许误差,此时中点即为所求根。
2、迭代法的步骤
(1)准备:选定初始值;
(2)迭代 代入迭代函数,计算迭代值;
(3)检查,若,则以代替继续迭代;反之,终止迭代,取作为迭代结果。
【实验内容】
分别用下列方法求f(x)=x3-3x-1=0在x0=2附近的根。根的准确值为x*=1.87938524…,要求准确到四位有效数字,并对比这两种算法的计算量。
(1)二分法 (2)简单迭代法
【实验结果与分析】 (1)使用二分法求解方程的根是,先给出一个有根区间,然后根据有根区间不断二分下去,直到满足题目要求的精度为止,最后要给出二分次数。
(2)使用迭代法求方程的根时,首先给出迭代方程,因为迭代方程有很多种,所以要先判断迭代方程的收敛性,然后给定一个初值,根据初值和迭代方程进行迭代,直到达到题目要求的进度,输出达到对应精度的迭代次数。
【教师评阅】
成绩: 日期: