【论文阅读笔记】文本相似度分析方面

该文综述了跨语言文本相似度的计算方法,包括基于机器翻译、统计翻译模型和CL-ESA算法。同时,探讨了结合预训练模型和语言知识库的文本匹配技术,指出BERT在处理固定词组结构和语义时的局限性。此外,还介绍了针对长文本匹配的图分类框架,并讨论了图表示学习、图卷积神经网络在节点特征抽取中的应用。研究进一步提出了利用先验知识指导BERT注意力机制在语义匹配任务中的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读笔记

1. title:基于文本加权词共现的跨语言文本相似度分析

张晓宇
中国传媒大学
软件导刊
跨语言文本相似度计算三种方法:
(1)基于全文机器翻译方法:把源语言和目标语言映射到中间语言
(2)基于统计翻译模型方法:建立两种语言之间生成翻译概念词典,因此要大规模对齐语料
(3)CL-ESA算法 explicit semantic analysis
Fig1
两个阶段: 匹配阶段和映射阶段
跨语言映射关系模型
输入: 平行语料
输出:<源语F, 目标语言F’>映射关系
Fig2在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值