基于PCA的TE过程故障检测

PCA作为最为基础的降维方法,已得到广泛应用,这里使用MATLAB代码实现对TE过程数据的降维处理,旨在用较少的主元成分解释尽可能多是原数据信息,并通过计算T2/SPE统计量来进行故障检测。

数据

链接:https://pan.baidu.com/s/1yHgZRqy6yyk9wsm6igqUSw 
提取码:odsz

主程序

clear all;
close all;
clc;
%%%%%%%%%%%%%%%%%样本数据导入%%%%%%%%%%%%%%%%%%%%

X_Y_train = matfile('datatexy.mat'); 
X_train = X_Y_train.X;
load('d01_te.mat')
X_test =  d01_te(:,[1:22,42:45,47:49,51:52]);
%%%%%%%%%%%%%%%%%样本数据标准化%%%%%%%%%%%%%%%%%%%%

X_train_zscore = zscore(X_train);

X_mean = mean(X_train);X_std = std(X_train);
[X_train_zscore_row,X_train_zscore_col] = size(X_train_zscore);

X_test=(X_test-repmat(X_mean,X_train_zscore_row,1))./repmat(X_std,X_train_zscore_row,1);
%X_test_zscore = zscore(X_test);

%%%%%%%%%%%%%%%%%训练集数据size%%%%%%%%%%%%%%%%%%%%

[X_train_zscore_row,X_train_zscore_col] = size(X_train_zscore);

%%%%%%%%%%%%%%%%%测试集数据size%%%%%%%%%%
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值